2025届浙江省乐清市数学九上期末质量跟踪监视模拟试题含解析_第1页
2025届浙江省乐清市数学九上期末质量跟踪监视模拟试题含解析_第2页
2025届浙江省乐清市数学九上期末质量跟踪监视模拟试题含解析_第3页
2025届浙江省乐清市数学九上期末质量跟踪监视模拟试题含解析_第4页
2025届浙江省乐清市数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省乐清市数学九上期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15° B.25° C.30° D.75°2.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A. B. C. D.3.《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学著作,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出了圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径长为()A.26寸 B.25寸 C.13寸 D.寸4.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为()A.1cm B.7cm C.3cm或4cm D.1cm或7cm5.下列方程中,为一元二次方程的是()A.x=2 B.x+y=3 C. D.6.用公式法解一元二次方程时,化方程为一般式当中的依次为()A. B. C. D.7.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25° B.5tan65° C.5cos25° D.5tan25°8.不透明袋子中有个红球和个蓝球,这些球除颜色外无其他差别,从袋子中随机取出个球是红球的概率是()A. B. C. D.9.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.π C.π﹣3 D.+π10.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3cm,那么PP′的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=8,DF=3FC,则BC=__________.12.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x…-2023…y…8003…当x=-1时,y=__________.13.已知二次函数y=-x-2x+3的图象上有两点A(-7,),B(-8,),则▲.(用>、<、=填空).14.如图,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_____(保留π).15.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为_____.16.是关于的一元二次方程的一个根,则___________17.已知二次函数(m为常数),若对于一切实数m和均有y≥k,则k的最大值为____________.18.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.三、解答题(共66分)19.(10分)如果一个直角三角形的两条直角边的长相差2cm,面积是24,那么这个三角形的两条直角边分别是多少?20.(6分)如图,在ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.21.(6分)如图,反比例函数的图象与一次函数的图象相交于点和点.(1)求反比例函数的解析式和点的坐标;(2)连接,,求的面积.(3)结合图象,请直接写出使反比例函数值小于一次函数值的自变量的取值范围.22.(8分)解方程:(1)x2﹣2x﹣1=0(2)2(x﹣3)=3x(x﹣3)23.(8分)已知:如图,点P是一个反比例函数的图象与正比例函数y=﹣2x的图象的公共点,PQ垂直于x轴,垂足Q的坐标为(2,0).(1)求这个反比例函数的解析式;(2)如果点M在这个反比例函数的图象上,且△MPQ的面积为6,求点M的坐标.24.(8分)如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点.求这条抛物线的表达式及其顶点坐标;当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?25.(10分)足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为本,销售单价为元.(1)请直接写出与之间的函数关系式和自变量的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润元最大?最大利润是多少元?26.(10分)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?

参考答案一、选择题(每小题3分,共30分)1、C【分析】由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【详解】∵∠A=45°,∠AMD=75°,∴∠C=∠AMD-∠A=75°-45°=30°,∴∠B=∠C=30°,故选C.2、B【分析】利用概率公式直接计算即可.【详解】解:根据题意可得:袋子中有有3个白球,4个黄球和5个红球,共12个,从袋子中随机摸出一个球,它是黄色球的概率.故选B.【点睛】本题考查概率的计算,掌握公式正确计算是本题的解题关键.3、A【分析】取圆心O,连接OP,过O作OH⊥PQ于H,根据垂径定理求出PH的长,再根据勾股定理求出OP的值,即可求出直径.【详解】解:取圆心O,连接OP,过O作OH⊥PQ于H,由题意可知MH=1寸,PQ=10寸,

∴PH=5寸,

在Rt△OPH中,OP2=OH2+PH2,设半径为x,

则x2=(x-1)2+52,

解得:x=13,

故圆的直径为26寸,

故选:A.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.4、D【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF-OE=1cm;当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF+OE=7cm.故选D.【点睛】本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.5、C【解析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、x=2是一元一次方程,故A错误;B、x+y=3是二元一次方程,故B错误;C、是一元二次方程,故C正确;D、是分式方程,故D错误;故选:C.【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是关键.6、B【分析】先整理成一般式,然后根据定义找出即可.【详解】方程化为一般形式为:,.故选:.【点睛】题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).其中a是二次项系数,b是一次项系数,c是常数项.7、C【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【详解】在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形及其应用是解题的关键.8、A【解析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有个球,红球有个,所以,取出红球的概率为,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.9、B【解析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【详解】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积=,故选B.【点睛】考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.10、D【分析】由题意易证,则有,进而可得,最后根据勾股定理可求解.【详解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵将△ABP绕点A逆时针旋转后,能与△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故选D.【点睛】本题主要考查旋转的性质及等腰直角三角形的性质与判定,熟练掌握旋转的性质及等腰直角三角形的性质与判定是解题的关键.二、填空题(每小题3分,共24分)11、6+1.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出比例式,DF=3FC计算得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【详解】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于;∴∠ABE=∠AEB=45°,∴AB=AE=8,∴直角三角形ABE中,BE=8,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=8,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC∵DF=3FC,设CG=x,DE=3x,则AD=8+3x=BC∵BG=BC+CG∴8=8+3x+x解得x=1-1,∴BC=8+3(1-1)=6+1,故答案为:6+1.【点睛】本题主要考查矩形的性质、相似三角形性质和判定以及等腰三角形的性质,解决问题的关键是得出BG=BE,从而进行计算.12、3【解析】试题解析:将点代入,得解得:二次函数的解析式为:当时,故答案为:13、>.【解析】根据已知条件求出二次函数的对称轴和开口方向,再根据点A、B的横坐标的大小即可判断出y1与y1的大小关系:∵二次函数y=﹣x1﹣1x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大.∵点A(﹣7,y1),B(﹣8,y1)是二次函数y=﹣x1﹣1x+3的图象上的两点,且﹣7>﹣8,∴y1>y1.14、4.【分析】连接AD,分别求出△ABC和扇形AMN的面积,相减即可得出答案.【详解】解:连接AD,∵⊙A与BC相切于点D,∴AD⊥BC,∵AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,BD=CD=,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=2,∴△ABC的面积=,扇形MAN得面积=,∴阴影部分的面积=.故答案为:.【点睛】本题考查的是圆中求阴影部分的面积,解题关键在于知道阴影部分面积等于三角形ABC的面积减去扇形AMN的面积,要求牢记三角形面积和扇形面积的计算公式.15、【分析】根据正六边的性质,正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,然后求出等边三角形的高即可.【详解】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=×2=.故答案为:.【点睛】此题考查的是正六边形的性质和正三角形的性质,掌握正六边形的性质和正三角形的性质是解决此题的关键.16、-1【分析】将x=-1代入一元二次方程,即可求得c的值.【详解】解:∵x=-1是关于x的一元二次方程的一个根,

∴,∴c=-1,

故答案:-1.【点睛】本题考查了一元二次方程的解的定义,是基础知识比较简单.17、【分析】因为二次函数系数大于0,先用含有m的代数式表示出函数y的最小值,得出,再求出于m的函数的最小值即可得出结果.【详解】解:,,关于m的函数为,,∴,∴k的最大值为.【点睛】本题考查二次函数的最值问题,先将函数化为顶点式,即可得出最值.18、【详解】∵AB∥CD∥EF,∴,故答案为.三、解答题(共66分)19、一条直角边的长为6cm,则另一条直角边的长为8cm.【分析】可设较短的直角边为未知数x,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm,则另一条直角边的长为(x+2)cm.根据题意列方程,得.解方程,得:x1=6,x2=(不合题意,舍去).∴一条直角边的长为6cm,则另一条直角边的长为8cm.【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.20、(1)详见解析;(2)【分析】(1)由平行四边形的性质可知AB∥CD,AD∥BC.所以∠B=∠ECF,∠DAE=∠AEB,又因为又∠DAE=∠F,进而可证明:△ABE∽△ECF;(2)由(1)可知:△ABE∽△ECF,所以,由平行四边形的性质可知BC=AD=1,所以EC=BC−BE=1−2=2,代入计算即可.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.∴∠B=∠ECF,∠DAE=∠AEB.又∵∠DAE=∠F,∴∠AEB=∠F.∴△ABE∽△ECF;(2)∵△ABE∽△ECF,∴,∵四边形ABCD是平行四边形,∴BC=AD=1.∴EC=BC−BE=1−2=2.∴.∴FC=.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质,关键是由平行四边形的性质得出AB∥CD,AD∥BC.21、(1),点的坐标为;(2);(3)或.【分析】(1)利用待定系数法求解析式,令y值相等求点B坐标;(2)数形结合求面积;(3)数形结合,利用图像解不等式【详解】解:(1)把代入得,∴.∴反比例函数的解析式为.联立解得∴点的坐标为.(2)设直线与轴交于点.可知点的坐标为,∴.∴.(3)当或时,反比例函数值小于一次函数值.【点睛】本题考查了反比例函数和一次函数的综合应用,数形结合思想是解题的关键22、(1),(2)或【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得;【详解】(1)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>0,方程有两个不相等的实数根,,∴;(2),移项得:,因式分解得:=0,∴或,解得:或.【点睛】本题主要考查了解一元二次方程-配方法和因式分解法,根据方程的不同形式,选择合适的方法是解题的关键.23、(1)y=﹣;(2)M(5,﹣)或(﹣1,8).【解析】(1)由Q(2,0),推出P(2,-4),利用待定系数法即可解决问题;

(2)根据三角形的面积公式求出MN的长,分两种情形求出点M的坐标即可.【详解】(1)把x=2代入y=﹣2x得y=﹣4∴P(2,﹣4),设反比例函数解析式y=(k≠0),∵P在此图象上∴k=2×(﹣4)=﹣8,∴y=﹣;(2)∵P(2,﹣4),Q(2,0)∴PQ=4,过M作MN⊥PQ于N.则•PQ•MN=6,∴MN=3,设M(x,﹣),则x=2+3=5或x=2﹣3=﹣1当x=5时,﹣=﹣,当x=﹣1时,﹣=1,∴M(5,﹣)或(﹣1,8).故答案为:(1)y=﹣;(2)M(5,﹣)或(﹣1,8).【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是用待定系数法求反比例函数的解析式,利用数形结合的思想表示出三角形的面积也是解答本题的关键.24、(1)抛物线的表达式为,抛物线的顶点坐标为;(2)P点坐标为;(3)当时,S有最大值,最大值为1.

【解析】分析:(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt△PAC中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;(3)用t可表示出P、M的坐标,过P作PE⊥x轴于点E,交AB于点F,则可表示出F的坐标,从而可用t表示出PF的长,从而可表示出△PAB的面积,利用S四边形PAMB=S△PAB+S△AMB,可得到S关于t的二次函数,利用二次函数的性质可求得其最大值.详解:根据题意,把,代入抛物线解析式可得,解得,抛物线的表达式为,,抛物线的顶点坐标为;如图1,过P作轴于点C,,,当时,,,即,设,则,,把P点坐标代入抛物线表达式可得,解得或,经检验,与点A重合,不合题意,舍去,所求的P点坐标为;当两个动点移动t秒时,则,,如图2,作轴于点E,交AB于点F,则,,,点A到PE的距离竽OE,点B到PE的距离等于BE,,且,,当时,S有最大值,最大值为1.

点睛:本题为二次函数的综合应用,涉及待定系数法、直角三角形的性质、二次函数的性质、三角形的面积及方程思想等知识.在(1)中注意待定系数法的应用,在(2)中构造Rt△PAC是解题的关键,在(3)中用t表示出P、M的坐标,表示出PF的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.25、(1)(2)当x=52时,w有最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论