2025届河南周口地区洪山乡联合学校九年级数学第一学期期末联考试题含解析_第1页
2025届河南周口地区洪山乡联合学校九年级数学第一学期期末联考试题含解析_第2页
2025届河南周口地区洪山乡联合学校九年级数学第一学期期末联考试题含解析_第3页
2025届河南周口地区洪山乡联合学校九年级数学第一学期期末联考试题含解析_第4页
2025届河南周口地区洪山乡联合学校九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南周口地区洪山乡联合学校九年级数学第一学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件中,属于必然事件的是()A.2020年的除夕是晴天 B.太阳从东边升起C.打开电视正在播放新闻联播 D.在一个都是白球的盒子里,摸到红球2.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)3.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:24.如图,在矩形中,.将向内翻折,点落在上,记为,折痕为.若将沿向内翻折,点恰好落在上,记为,则的长为()A. B. C. D.5.已知二次函数,下列说法正确的是()A.该函数的图象的开口向下 B.该函数图象的顶点坐标是C.当时,随的增大而增大 D.该函数的图象与轴有两个不同的交点6.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是

A. B. C. D.7.如图,正方形网格中,每个小正方形的边长均为1个单位长度.,在格点上,现将线段向下平移个单位长度,再向左平移个单位长度,得到线段,连接,.若四边形是正方形,则的值是()A.3 B.4 C.5 D.68.如图.已知的半径为3,,点为上一动点.以为边作等边,则线段的长的最大值为()A.9 B.11 C.12 D.149.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限10.如图,小江同学把三角尺含有角的一端以不同的方向穿入进另一把三角尺(含有角)的孔洞中,已知孔洞的最长边为,则三角尺穿过孔洞部分的最大面积为()A. B. C. D.11.如图,正六边形ABCDEF的半径OA=OD=2,则点B关于原点O的对称点坐标为()A.(1,﹣) B.(﹣1,) C.(﹣,1) D.(,﹣1)12.如图坐标系中,O(0,0),A(3,3),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则AC:AD的值是()A.1:2 B.2:3 C.6:7 D.7:8二、填空题(每题4分,共24分)13.若关于x的一元二次方程(a+3)x2+2x+a2﹣9=0有一个根为0,则a的值为_____.14.方程2x2-6x-1=0的负数根为___________.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是_____.16.已知点E是线段AB的黄金分割点,且,若AB=2则BE=__________.17.某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是_____,此时每千克的收益是_________18.如果是从四个数中任取的一个数,那么关于的方程的根是负数的概率是________.三、解答题(共78分)19.(8分)问题发现:(1)如图1,内接于半径为4的,若,则_______;问题探究:(2)如图2,四边形内接于半径为6的,若,求四边形的面积最大值;解决问题(3)如图3,一块空地由三条直路(线段、AB、)和一条弧形道路围成,点是道路上的一个地铁站口,已知千米,千米,,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、、、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?若存在,求其最大值;若不存在,说明理由.20.(8分)如图①,矩形中,,,将绕点从处开始按顺时针方向旋转,交边(或)于点,交边(或)于点.当旋转至处时,的旋转随即停止.(1)特殊情形:如图②,发现当过点时,也恰好过点,此时是否与相似?并说明理由;(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设时,的面积为,试用含的代数式表示;①在旋转过程中,若时,求对应的的面积;②在旋转过程中,当的面积为4.2时,求对应的的值.21.(8分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.22.(10分)解一元二次方程:x2﹣2x﹣3=1.23.(10分)如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.24.(10分)正比例函数y=2x与反比例函数y=的图象有一个交点的纵坐标为1.(1)求m的值;(2)请结合图象求关于x的不等式2x≤的解集.25.(12分)某商贸公司以每千克元的价格购进一种干果,计划以每千克元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:.(1)求与之间的函数关系式;(2)函数图象中点表示的实际意义是;(3)该商贸公司要想获利元,则这种干果每千克应降价多少元?26.经过点A(4,1)的直线与反比例函数y=的图象交于点A、C,AB⊥y轴,垂足为B,连接BC.(1)求反比例函数的表达式;(2)若△ABC的面积为6,求直线AC的函数表达式;(3)在(2)的条件下,点P在双曲线位于第一象限的图象上,若∠PAC=90°,则点P的坐标是.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据必然事件和随机事件的概念进行分析.【详解】A选项:2020年的元旦是晴天,属于随机事件,故不合题意;

B选项:太阳从东边升起,属于必然事件,故符合题意;

C选项:打开电视正在播放新闻联播,属于随机事件,故不合题意;

D选项:在一个都是白球的盒子里,摸到红球,属于不可能事件,故不合题意.故选:B.【点睛】考查了确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件;注:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.2、A【分析】利用位似图形的性质和两图形的位似比,并结合点A的坐标即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选A.【点睛】本题主要考查位似变换、坐标与图形性质,解题的关键是结合位似比和点A的坐标.3、B【详解】∵四边形ABCD是平行四边形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故选B4、B【分析】首先根据矩形和翻折的性质得出△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,进而得出∠AED=∠A'ED=∠A'EB=60°,∠ADE=∠A'DE=∠A'DC=30°,判定△DB'A'≌△DCA',DC=DB',得出AE,设AB=DC=x,利用勾股定理构建方程,即可得解.【详解】∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE=,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为B.【点睛】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°.5、D【分析】根据二次函数的性质解题.【详解】解:A、由于y=x2-4x-3中的a=1>0,所以该抛物线的开口方向是向上,故本选项不符合题意.

B、由y=x2-4x-3=(x-2)2-7知,该函数图象的顶点坐标是(2,-7),故本选项不符合题意.

C、由y=x2-4x-3=(x-2)2-7知,该抛物线的对称轴是x=2且抛物线开口方向向上,所以当x>2时,y随x的增大而增大,故本选项不符合题意.

D、由y=x2-4x-3知,△=(-4)2-4×1×(-3)=28>0,则该抛物线与x轴有两个不同的交点,故本选项符合题意.

故选:D.【点睛】考查了抛物线与x轴的交点,二次函数的性质,需要利用二次函数图象与系数的关系,二次函数图象与x轴交点的求法,配方法的应用等解答,难度不大.6、D【分析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.②时,由图像可知此时,即,故②正确.③由对称轴,可得,所以错误,故③错误;④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题.7、A【分析】根据线段的平移规律可以看出,线段AB向下平移了1个单位,向左平移了2个单位,相加即可得出.【详解】解:根据线段的平移规律可以看出,线段AB向下平移了1个单位,向左平移了2个单位,得到A'B',则m+n=1.故选:A【点睛】本题考查的是线段的平移问题,观察图形时要考虑其中一点就行.8、B【分析】以OP为边向下作等边△POH,连接AH,根据等边三角形的性质通过“边角边”证明△HPA≌△OPM,则AH=OM,然后根据AH≤OH+AO即可得解.【详解】解:如图,以OP为边向下作等边△POH,连接AH,∵△POH,△PAM都是等边三角形,∴PH=PO,PA=PM,∠PHO=∠APM=60°,∴∠HPA=∠OPM,∴△HPA≌△OPM(SAS),∴AH=OM,∵AH≤OH+AO,即AH≤11,∴AH的最大值为11,则OM的最大值为11.故选B.【点睛】本题主要考查等边三角形的性质,全等三角形的判定与性质等,解此题的关键在于熟练掌握其知识点,难点在于作辅助线构造等边三角形.9、D【分析】此题涉及的知识点是反比例函数的图像与性质,根据点坐标P(﹣1,2)带入反比例函数y=中求出k值就可以判断图像的位置.【详解】根据y=的图像经过点P(-1,2),代入可求的k=-2,因此可知k<0,即图像经过二四象限.故选D【点睛】此题重点考察学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键.10、B【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为∴S==故选B.【点睛】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.11、D【分析】根据正六边形的性质,解直角三角形即可得到结论.【详解】解:连接OB,∵正六边形ABCDEF的半径OA=OD=2,∴OB=OA=AB=6,∠ABO=∠60°,∴∠OBH=60°,∴BH=OB=1,OH=OB=,∴B(﹣,1),∴点B关于原点O的对称点坐标为(,﹣1).故选:D.【点睛】本题考查了正六边形的性质和解直角三角形的相关知识,解决本题的关键是熟练掌握正六边形的性质,能够得到相应角的度数.12、B【分析】过A作AF⊥OB于F,如图所示:根据已知条件得到AF=1,OF=1,OB=6,求得∠AOB=60°,推出△AOB是等边三角形,得到∠AOB=∠ABO=60°,根据折叠的性质得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根据相似三角形的性质得到BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,于是得到结论.【详解】过A作AF⊥OB于F,如图所示:∵A(1,1),B(6,0),∴AF=1,OF=1,OB=6,∴BF=1,∴OF=BF,∴AO=AB,∵tan∠AOB=,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∵∠OCE+∠COE=∠OCE+60°=∠CED+∠DEB=60°+∠DEB,∴∠OCE=∠DEB,∴△CEO∽△EDB,∴==,∵OE=,∴BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,则,,∴6b=10a﹣5ab①,24a=10b﹣5ab②,②﹣①得:24a﹣6b=10b﹣10a,∴,即AC:AD=2:1.故选:B.【点睛】本题考查了翻折变换-折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,证得△AOB是等边三角形是解题的关键.二、填空题(每题4分,共24分)13、1【分析】将x=0代入原方程,结合一元二次方程的定义即可求得a的值.【详解】解:根据题意,将x=0代入方程可得a2﹣9=0,解得:a=1或a=﹣1,∵a+1≠0,即a≠﹣1,∴a=1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.14、【分析】先计算判别式的值,再利用求根公式法解方程,然后找出负数根即可.【详解】△=(﹣6)2﹣4×2×(﹣1)=44,x==,所以x1=>1,x2=<1.即方程的负数根为x=.故答案为x=.【点睛】本题考查了公式法解一元二次方程:用求根公式解一元二次方程的方法是公式法.15、y=2x﹣1【分析】过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(4,0),B(0,2),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.【详解】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO+∠BAO=∠BAO+∠CAD,∴∠ABO=∠CAD,在△ACD和△BAO中,∴△ACD≌△BAO(AAS)∴AD=OB=2,CD=OA=4,∴C(6,4)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得,∴∴直线AC的解析式为y=2x﹣1.故答案为:y=2x﹣1.【点睛】本题是几何图形旋转的性质与待定系数法求一次函数解析式的综合题,求得C的坐标是解题的关键,难度中等.16、【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比;【详解】解:∵点E是线段AB的黄金分割点,且BE>AE,∴BE=AB,而AB=2,∴BE=;故答案为:;【点睛】本题主要考查了黄金分割,掌握黄金分割是解题的关键.17、9时元【分析】观察图象找出点的坐标,利用待定系数法即可求出关于x的函数关系式,=者做差后,利用二次函数的性质,即可解决最大收益问题.【详解】解:设交易时间为x,售价为,成本为,则设图1、图2的解析式分别为:,依题意得∴解得∴∴出售每千克这种水果收益:∵∴当时,y取得最大值,此时:∴在这段时间内,出售每千克这种水果收益最大的时刻是9时,此时每千克的收益是元故答案为:9时;元【点睛】本题考查了待定系数法求函数解析式、二次函数的性质,解题的关键是:观察函数图象根据点的坐标,利用待定系数法求出关于x的函数关系式.18、【分析】解分式方程得,由方程的根为负数得出且,即a的取值范围,再从所列4个数中找到符合条件的结果数,从而利用概率公式计算可得.【详解】解:将方程两边都乘以,得:,解得,方程的解为负数,且,则且,所以在所列的4个数中,能使此方程的解为负数的有0、-2这2个数,则关于的方程的根为负数的概率为,故答案为:.【点睛】本题主要考查了分式方程的解法和概率公式,解题的关键是掌握解分式方程的能力及随机事件的概率(A)事件可能出现的结果数所有可能出现的结果数.三、解答题(共78分)19、(1);(2)四边形ABCD的面积最大值是;(3)存在,其最大值为.【分析】(1)连接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根据OA=4,利用余弦公式求出AH,即可得到AB的长;(2)连接AC,由得出AC=,再根据四边形的面积=,当DH+BM最大时,四边形ABCD的面积最大,得到BD是直径,再将AC、BD的值代入求出四边形面积的最大值即可;(3)先证明△ADM≌△BMC,得到△CDM是等边三角形,求得等边三角形的边长CD,再根据完全平方公式的关系得出PD=PC时PD+PC最大,根据CD、∠DPC求出PD,即可得到四边形周长的最大值.【详解】(1)连接OA、OB,作OH⊥AB于H,∵,∴∠AOB=120.∵OH⊥AB,∴∠AOH=∠AOB=,AH=BH=AB,∵OA=4,∴AH=,∴AB=2AH=.故答案为:.(2)∵∠ABC=120,四边形ABCD内接于,∴∠ADC=60,∵的半径为6,∴由(1)得AC=,如图,连接AC,作DH⊥AC,BM⊥AC,∴四边形的面积=,当DH+BM最大时,四边形ABCD的面积最大,连接BD,则BD是的直径,∴BD=2OA=12,BD⊥AC,∴四边形的面积=.∴四边形ABCD的面积最大值是(3)存在;∵千米,千米,,∴△ADM≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180-∠B=120,∴∠AMD+∠BMC=120,∴∠DMC=60,∴△CDM是等边三角形,∴C、D、M三点共圆,∵点P在弧CD上,∴C、D、M、P四点共圆,∴∠DPC=180-∠DMC=120,∵弧的半径为1千米,∠DMC=60,∴CD=,∵,∴,∴,∴当PD=PC时,PD+PC最大,此时点P在弧CD的中点,交DC于H,在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,∴,∴四边形的周长最大值=DM+CM+DP+CP=.【点睛】此题是一道综合题,考查圆的性质,垂径定理,三角函数,三角形全等的判定及性质,动点最大值等知识点.(1)中问题发现的结论应用很主要,理解题意在(2)、(3)中应用解题,(3)的PD+PC最大值的确定是难点,注意与所学知识的结合才能更好的解题.20、(1)相似;(2)定值,;(3)①2,②.【分析】(1)根据“两角相等的两个三角形相似”即可得出答案;(2)由得出,又为定值,即可得出答案;(3)先设结合得出①将t=1代入中求解即可得出答案;②将s=4.2代入中求解即可得出答案.【详解】(1)相似理由:∵,,∴,又∵,∴;(2)在旋转过程中的值为定值,理由如下:过点作于点,∵,,∴,∴,∵四边形为矩形,∴四边形为矩形,∴∴即在旋转过程中,的值为定值,;(3)由(2)知:,∴,又∵,∴,,∴即:;①当时,的面积,②当时,∴解得:,(舍去)∴当的面积为4.2时,;【点睛】本题考查的是几何综合,难度系数较高,涉及到了相似以及矩形等相关知识点,第三问解题关键在于求出面积与AE的函数关系式.21、(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得AD=AB=,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)设BC=a,∵AC=2BC,∴AC=2a,∴AD=AB===a,∵OE∥BC,且AO=BO,∴OE为△ABC的中位线,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE===2a,∴OD=OE+DE=,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=()2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,∵AB是直径,∴DA与⊙O相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.22、x1=﹣1,x2=2.【分析】先把方程左边分解,原方程转化为x+1=1或x﹣2=1,然后解一次方程即可.【详解】解:∵x2﹣2x﹣2=1,∴(x+1)(x﹣2)=1,∴x+1=1或x﹣2=1,∴x1=﹣1,x2=2.【点睛】本题考查了一元二次方程的解法:配方法、公式法和因式分解法.三种方法均可解出方程的根,这里选用的是因式分解法.23、(1);(2);(3).【分析】将A,B,C点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D的坐标为,作B点关于直线的对称点,可求出直线的函数关系式为,当在直线上时,的值最小;(3)作轴交AC于E点,求得AC的解析式为,设,,得,所以,,求函数的最大值即可.【详解】将A,B,C点的坐标代入解析式,得方程组:解得抛物线的解析式为配方,得,顶点D的坐标为作B点关于直线的对称点,如图1,则,由得,可求出直线的函数关系式为,当在直线上时,的值最小,则.作轴交AC于E点,如图2,AC的解析式为,设,,,当时,的面积的最大值是;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.24、(1)8;(2)x≤﹣2或0<x≤2【分析】(1)先利用正比例函数解析式确定一个交点坐标,然后把交点坐标代入y=中可求出m的值;(2)利用正比例函数和反比例函数的性质得到正比例函数y=2x与反比例函数y=的图的另一个交点坐标为(﹣2,﹣1),然后几何图像写出正比例函数图像不在反比例函数图像上方所对应的自变量的范围即可.【详解】解:(1)当y=1时,2x=1,解得x=2,则正比例函数y=2x与反比例函数y=的图像的一个交点坐标为(2,1),把(2,1)代入y=得m=2×1=8;(2)∵正比例函数y=2x与反比例函数y=的图像有一个交点坐标为(2,1),∴正比例函数y=2x与反比例函数y=的图的另一个交点坐标为(﹣2,﹣1),如图,当x≤﹣2或0<x≤2时,2x≤,∴关于x的不等式2x≤的解集为x≤﹣2或0<x≤2.【点睛】本题主要考查的是正比例函数与反比例函数的基本性质以及两个函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论