版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
德州市重点中学2025届九年级数学第一学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD等于()A.75° B.95° C.100° D.105°2.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.64B.6(1+2x)=8.64C.6(1+x)2=8.64D.6+6(1+x)+6(1+x)2=8.643.如图,四边形ABCD是正方形,延长BC到E,使,连接AE交CD于点F,则()A.67.5° B.65° C.55° D.45°4.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠DAE=20°,则∠BAC的度数为()A.70° B.80° C.90° D.100°5.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm6.下列事件属于必然事件的是()A.在一个装着白球和黑球的袋中摸球,摸出红球B.抛掷一枚硬币2次都是正面朝上C.在标准大气压下,气温为15℃时,冰能熔化为水D.从车间刚生产的产品中任意抽一个,是次品7.下列汽车标志中,是中心对称图形的有()个.A.1 B.2 C.3 D.48.如图,在△ABC中E、F分别是AB、AC上的点,EF∥BC,且,若△AEF的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.189.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于点D,OD=2,则∠BAC的度数是().A.55° B.60° C.65° D.70°10.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS二、填空题(每小题3分,共24分)11.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当取四个不同数值时此二次函数的图象.发现它们的顶点在同一条直线上,那么这条直线的表达式是_________.12.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,求选取点A为坐标原点时的抛物线解析式是_______.13.如图,中,A,B两个顶点在轴的上方,点C的坐标是(−1,0).以点C为位似中心,在轴的下方作的位似图形,并把的边长放大到原来的2倍,记所得的像是.设点A的横坐标是,则点A对应的点的横坐标是_________.14.若方程(a-3)x|a|-1+2x-8=0是关于x的一元二次方程,则a的值是_____.15.某园进行改造,现需要修建一些如图所示圆形(不完整)的门,根据实际需要该门的最高点C距离地面的高度为2.5m,宽度AB为1m,则该圆形门的半径应为_____m.16.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有_____千克种子能发芽.17.如图,矩形的面积为,它的对角线与双曲线相交于点,且,则________.18.已知:如图,点是边长为的菱形对角线上的一个动点,点是边的中点,且,则的最小值是_______.三、解答题(共66分)19.(10分)我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B出有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,求正方形城池的边长.20.(6分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是,,.(1)请画出关于轴对称的;(2)以点为位似中心,相似比为1:2,在轴右侧,画出放大后的;21.(6分)阅读下面内容,并按要求解决问题:问题:“在平面内,已知分别有2个点,3个点,4个点,5个点,…,个点,其中任意三个点都不在同一条直线上经过每两点画一条直线,它们可以分别画多少条直线?”探究:为了解决这个问题,希望小组的同学们,设计了如下表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线)点数2345…示意图…直线条数1…请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为______;(2)若某同学按照本题中的方法,共画了28条直线,求该平面内有多少个已知点?22.(8分)求值:+2sin30°-tan60°-tan45°23.(8分)已知为的外接圆,点是的内心,的延长线交于点,交于点.(1)如图1,求证:.(2)如图2,为的直径.若,求的长.24.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.25.(10分)如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.26.(10分)如图,AB和DE是直立在地面上的两根立柱.AB=6m,某一时刻AB在阳光下的投影BC=4m(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为9m,请你计算DE的长.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题解析:连接故选D.点睛:圆内接四边形的对角互补.2、C【分析】设该快递公司这两个月投递总件数的月平均增长率为x,根据今年8月份与10月份完成投递的快递总件数,即可得出关于x的一元二次方程,此题得解.【详解】解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意得:6(1+x)2=8.1.故选:C.【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知增长率的问题.3、A【分析】由三角形及正方形对角线相互垂直平分相等的性质进行计算求解,把各角之间关系找到即可求解.【详解】解:∵四边形ABCD是正方形,CE=CA,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFD=90°-22.5°=67.5°,故选A.【点睛】主要考查到正方形的性质,等腰三角形的性质和外角与内角之间的关系.这些性质要牢记才会灵活运用.4、D【分析】先根据垂直平分线的特点得出∠B=∠DAB,∠C=∠EAC,然后根据△ABC的内角和及∠DAE的大小,可推导出∠DAB+∠EAC的大小,从而得出∠BAC的大小.【详解】如下图∵DM是线段AB的垂直平分线,∴DA=DB,∴∠B=∠DAB,同理∠C=∠EAC,∵∠B+∠DAB+∠C+∠EAC+∠DAE=180°,∵∠DAE=20°∴∠DAB+∠EAC=80°,∴∠BAC=100°,故选:D.【点睛】本题考查垂直平分线的性质,解题关键是利用整体思想,得出∠DAB+∠EAC=80°.5、C【分析】连接OA,根据垂径定理,求出AD,根据勾股定理计算即可.【详解】连接OA,∵OD⊥AB,∴AD=AB=4,由勾股定理得,OA==5,故选C.【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.6、C【分析】必然事件就是一定发生的事件,即发生的概率是1的事件,据此逐一判断即可.【详解】A.在一个装着白球和黑球的袋中摸球,摸出红球,一定不会发生,是不可能事件,不符合题意,B.抛掷一枚硬币2次都是正面朝上,可能朝上,也可能朝下,是随机事件,不符合题意,C.在标准大气压下,气温为15℃时,冰能熔化为水,是必然事件,符合题意.D.从车间刚生产的产品中任意抽一个,可能是正品,也可能是次品,是随机事件,不符合题意,故选:C.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【分析】根据中心对称图形的概念逐一进行分析即可得.【详解】第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形,故选B.【点睛】本题考查了中心对称图形,熟知中心对称图形是指一个图形绕某一个点旋转180度后能与自身完全重合的图形是解题的关键.8、C【解析】解:∵,∴,∵EF∥BC,∴△AEF∽△ABC,∴,∵△AEF的面积为2,∴S△ABC=18,则S四边形EBCF=S△ABC-S△AEF=18-2=1.故选C.【点睛】本题考查相似三角形的判定与性质,难度不大.9、B【分析】首先连接OB,由OD⊥BC,根据垂径定理,可得∠BOC=2∠DOC,又由OD=1,⊙O的半径为2,易求得∠DOC的度数,然后由勾股定理求得∠BAC的度数.【详解】连接OB,∵OD⊥BC,∴∠ODC=90°,∵OC=2,OD=1,∴cos∠COD=,∴∠COD=60°,∵OB=OC,OD⊥BC,∴∠BOC=2∠DOC=120°,∴∠BAC=∠BOC=60°.故选B.【点睛】此题考查圆周角定理、垂径定理,解题关键在于利用圆周角定理得出两角之间的关系.10、D【分析】根据利用科学计算器由三角函数值求角度的使用方法,容易进行选择.【详解】若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按DMS,故选:D.【点睛】本题考查科学计算器的使用方法,属基础题.二、填空题(每小题3分,共24分)11、【分析】已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去a得出x、y的关系式.【详解】解:二次函数中,顶点坐标为:,设顶点坐标为(x,y),∴①,②,由①2+②,得,∴;故答案为:.【点睛】本题考查了二次函数的性质,根据顶点式求顶点坐标的方法是解题的关键,注意运用消元的思想解题.12、【分析】以A为坐标原点建立坐标系,求出其它两点的坐标,用待定系数法求解析式即可.【详解】解:以A为原点建立坐标系,则A(0,0),B(12,0),C(6,4)设y=a(x-h)2+k,∵C为顶点,∴y=a(x-6)2+4,把A(0,0)代入上式,36a+4=0,解得:,∴;故答案为:.【点睛】本题主要考查了待定系数法求二次函数解析式,恰当的选取坐标原点,求出各点的坐标是解决问题的关键.13、【分析】△A′B′C的边长是△ABC的边长的2倍,过A点和A′点作x轴的垂线,垂足分别是D和E,因为点A的横坐标是a,则DC=-1-a.可求EC=-2-2a,则OE=CE-CO=-2-2a-1=-3-2a【详解】解:如图,过A点和A′点作x轴的垂线,垂足分别是D和E,∵点A的横坐标是a,点C的坐标是(-1,0).
∴DC=-1-a,OC=1
又∵△A′B′C的边长是△ABC的边长的2倍,CE=2CD=-2-2a,OE=CE-OC=2-2a-1=-3-2a故答案为:-3-2a【点睛】本题主要考查了相似的性质,相似于点的坐标相联系,把点的坐标的问题转化为线段的长的问题.14、-3【分析】根据一元二次方程的定义列方程求出a的值即可.【详解】∵方程(a-3)x|a|-1+2x-8=0是关于x的一元二次方程,∴-1=2,且a-3≠0,解得:a=-3,故答案为:-3【点睛】本题考查一元二次方程的定义,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程;一般形式为ax2+bx+c=0(a≠0),熟练掌握定义是解题关键,注意a≠0的隐含条件,不要漏解.15、【分析】过圆心作弦AB的垂线,运用垂径定理和勾股定理即可得到结论.【详解】过圆心点O作OE⊥AB于点E,连接OC,∵点C是该门的最高点,∴,∴CO⊥AB,∴C,O,E三点共线,连接OA,∵OE⊥AB,∴AE==0.5m,设圆O的半径为R,则OE=2.5-R,∵OA2=AE2+OE2,∴R2=(0.5)2+(2.5-R)2,解得:R=,故答案为.【点睛】本题考查了垂径定理,勾股定理,正确的作出辅助线是解题的关键.16、1.1【分析】观察图中的频率稳定在哪个数值附近,由此即可求出作物种子的概率.【详解】解:∵大量重复试验发芽率逐渐稳定在0.11左右,∴10kg种子中能发芽的种子的质量是:10×0.11=1.1(kg)故答案为:1.1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17、12【解析】试题分析:由题意,设点D的坐标为(x,y),则点B的坐标为(,),所以矩形OABC的面积,解得∵图象在第一象限,∴.考点:反比例系数k的几何意义点评:反比例系数k的几何意义是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.18、【分析】找出B点关于AC的对称点D,连接DM,则DM就是PM+PB的最小值,求出即可.【详解】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
∴PE+PB=PE+PD=DE,
即DM就是PM+PB的最小值,
∵∠BAD=60°,AD=AB,
∴△ABD是等边三角形,
∵AE=BE,
∴DE⊥AB(等腰三角形三线合一的性质)
在Rt△ADE中,DM==.
故PM+PB的最小值为.故答案为:.【点睛】本题考查的是最短线路问题及菱形的性质,由菱形的性质得出点D是点B关于AC的对称点是解答此题的关键.三、解答题(共66分)19、正方形城池的边长为300步【分析】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例,列出方程,通过解方程即可求出小城的边长.【详解】依题意得AB=30步,CD=750步.设AE为x步,则正方形边长为2x步,根据题意,Rt△ABE∽Rt△CED∴即.解得x1=150,x2=-150(不合题意,舍去),∴2x=300∴正方形城池的边长为300步.【点睛】本题考查相似三角形的应用.20、(1)见解析;(2)见解析.【分析】(1)利用关于轴对称点的性质:横坐标相等,纵坐标互为相反数可以求出.(2)利用位似图像的性质得出对应点位置.【详解】如图所示:画出轴对称的.画出放大后的位似.【点睛】本题考查了关于对称轴对称的点的性质以及位似的性质.21、(1);(2)该平面内有8个已知点.【分析】(1)根据图表中数据过两点的直线有1条,过不在同一直线上的三点的直线有3条,过任何三点都不在一条直线上的四点的直线有6条,可总结归纳出平面内点与直线的关系为;(2)设设该平面内有个已知点.利用得出的关系式列方程求解即可.【详解】解:(1)当平面内有2个点时:可以画条直线;当平面内有3个点时:可以画条直线;当平面内有4个点时:可以画条直线;…当平面内有个点时:可以画条直线;(2)设该平面内有个已知点.由题意,得.解得,(舍).答:该平面内有8个已知点.【点睛】此题是探求规律题并考查解一元二次方程,读懂题意,找出规律是解题的关键,解题时能够进行知识的迁移是一种重要的解题能力.22、【解析】先得出式子中的特殊角的三角函数值,再按实数溶合运算顺序进行计算即可.解:原式=23、(1)证明见解析;(2)【分析】(1)连接半径,根据内心的性质、圆的基本性质以及三角形外角的性质求得,即可得证结论;(2)连接半径,由为的直径、点是的内心以及等腰三角形的三线合一可得、,然后依次解、即可得出结论.【详解】解:(1)证明:连接,如图:∵是的内心∴,∵∴∴∵∴(2)连接,如图:∵是直径,平分∴且∵,,∴在中,∴∴∵∴∴在中,∴由(1)可知,∴.故答案是:(1)证明见解析;(2)【点睛】本题考查了三角形内心的性质、圆的一些基本性质、三角形外角的性质、等腰三角形的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 川教版八年级生命生态与安全教案
- 住宅装修延期及补偿条款
- 2023-2024学年全国小学四年级上英语人教版模拟试卷(含答案解析)
- 2021区《事业单位知识》综合素质历年真题【真题详细解析】
- 2024年融资服务居间协议范本
- 2024年全新建筑施工合同法
- 个人借款给企业的借款合同范本2024年
- 2024年株洲客运从业资格证考试模拟
- 2024年青岛个人汽车租赁合同范本
- 2024年健身卡转让协议书范本
- 《色彩的对比》课件
- 小学人教四年级数学四年级上册《速度、时间和路程》课件
- 常见生产事故防治
- 水与我们的生活课件
- 中级钳工鉴定题库及答案
- 2023年昆明有色冶金设计研究院股份公司招聘笔试模拟试题及答案解析
- 河北廊坊开发区社区工作者公开招聘36人(必考题)模拟卷和答案
- 设计学概论第六章设计师课件
- 知名地产装配式建筑绿色白皮书课件
- 雷达技术实验报告
- ZXV10 T502(V1.0)会议电视终端
评论
0/150
提交评论