2022年北京昌平临川育人学校数学九上期末质量检测试题含解析_第1页
2022年北京昌平临川育人学校数学九上期末质量检测试题含解析_第2页
2022年北京昌平临川育人学校数学九上期末质量检测试题含解析_第3页
2022年北京昌平临川育人学校数学九上期末质量检测试题含解析_第4页
2022年北京昌平临川育人学校数学九上期末质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60° B.65° C.70° D.75°2.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A. B.C. D.3.已有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎 B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎 D.甲、乙、丙都说谎4.如图,电线杆的高度为,两根拉线与相互垂直,,则拉线的长度为(、、在同一条直线上)()A. B. C. D.5.观察下列四个图形,中心对称图形是()A. B. C. D.6.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A. B. C.2 D.7.如图,在中,,,点、、分别在边、、上,且与关于直线DE对称.若,,则().A.3 B.5 C. D.8.下列选项的图形是中心对称图形的是()A. B. C. D.9.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟.刚把两人洗完,就听到两个小家伙在床上笑.“你们笑什么?”妈妈问.“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为()A. B. C. D.110.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.11.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.12.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.如图,已知与相切于点,点在上.求证:.证明:连接并延长,交于点,连接.∵与相切于点,∴,∴.∵@是的直径,∴(直径所对的圆周角是90°),∴,∴◎.∵,∴▲(同弧所对的※相等),∴.下列选项中,回答正确的是()A.@代表 B.◎代表 C.▲代表 D.※代表圆心角二、填空题(每题4分,共24分)13.如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点.若,则的面积为__________.14.如图,是的直径,弦交于点,,,,则的长为_____.15.若是一元二次方程的两个根,则=___________.16.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点坐标为(m,0).若2<m<5,则a的取值范围是_____.17.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为_________________18.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x名学生,根据题意,列出方程为________.三、解答题(共78分)19.(8分)关于x的一元二次方程为(m-1)x2-2mx+m+1=0(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?20.(8分)如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.(1)在图1中,作AD的中点P;(2)在图2中,作AB的中点Q.21.(8分)甲、乙两人进行摸牌游戏现有三张形状大小完全相同的牌,正面分别标有数字2,3,1.将三张牌背面朝上,洗匀后放在桌子上,甲从中随机抽取一张牌,记录数字后放回洗匀,乙再从中随机抽取一张.(1)甲从中随机抽取一张牌,抽取的数字为奇数的概率为;(2)请用列表法或画树状图的方法,求两人抽取的数字相同的概率.22.(10分)如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.(1)当PE⊥AB,PF⊥BC时,如图1,则的值为;(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.23.(10分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.24.(10分)(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.25.(12分)如图,为正方形对角线上一点,以为圆心,长为半径的与相切于点.(1)求证:与相切.(2)若正方形的边长为1,求半径的长.26.如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接.(1)求证:.(2)求证:(3)若,求的值.

参考答案一、选择题(每题4分,共48分)1、C【分析】由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.【详解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故选:C.【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.2、B【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.3、B【分析】分情况,依次推理可得.【详解】解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.【点睛】本题考查推理能力,关键在于假设法,推出矛盾是否即可判断对错.4、B【分析】先通过等量代换得出,然后利用余弦的定义即可得出结论.【详解】故选:B.【点睛】本题主要考查解直角三角形,掌握余弦的定义是解题的关键.5、C【分析】根据中心对称图形的定义即可判断.【详解】在平面内,若一个图形可以绕某个点旋转180°后能与自身重合,那么这个图形叫做中心对称图形,根据定义可知,C选项中的图形是中心对称图形.故答案选:C.【点睛】本题考查的知识点是中心对称图形,解题的关键是熟练的掌握中心对称图形.6、D【分析】根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.【详解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故选D.【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.7、D【分析】过点F作FH⊥AD,垂足为点H,设,根据勾股定理求出AC,FH,AH,设,根据轴对称的性质知,在Rt△BFE中运用勾股定理求出x,通过证明,求出DH的长,根据求出a的值,进而求解.【详解】过点F作FH⊥AD,垂足为点H,设,由题意知,,,由勾股定理知,,,∵与关于直线DE对称,∴,,设,则,在Rt△BFE中,,解得,,即,,∵,∴,,∴,∵,∴,∴,∴,∵,∴解得,,∴,故选D.【点睛】本题考查了轴对称图形的性质,相似三角形的判定与性质,勾股定理,等腰直角三角形的性质等,巧作辅助线证明是解题的关键.8、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点睛】本题主要考查的是中心对称图形,理解中心对称图形的定义是判断这四个图形哪一个是中心对称图形的关键.9、A【分析】根据概率是指某件事发生的可能性为多少解答即可.【详解】解:此事件发生的概率故选A.【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.10、B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【点睛】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.12、B【分析】根据圆周角定理和切线的性质以及余角的性质判定即可.【详解】解:由证明过程可知:A:@代表AE,故选项错误;B:由同角的余角相等可知:◎代表,故选项正确;C和D:由同弧所对的圆周角相等可得▲代表∠E,※代表圆周角,故选项错误;故选B.【点睛】本题考查了切线的性质,圆周角定理,余角的性质等知识点,熟记知识点是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【详解】∵旋转后AC的中点恰好与D点重合,

即AD=AC′=AC,

∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,

∴∠DAD′=60°,

∴∠DAE=30°,

∴∠EAC=∠ACD=30°,

∴AE=CE,

在Rt△ADE中,设AE=EC=x,∵AB=CD=6

∴DE=DC-EC=AB-EC=6-x,AD=CD×tan∠ACD=×6=2,

根据勾股定理得:x2=(6-x)2+(2)2,

解得:x=4,

∴EC=4,

则S△AEC=EC•AD=4故答案为:4【点睛】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.14、【分析】作于,连结,由,得,由,,得,进而得,根据勾股定理得,即可得到答案.【详解】作于,连结,如图,∵,∴,∵,,∴,∴,∴,∵在中,,∴,∴,∵在中,,,∴,∴.故答案为:【点睛】本题主要考查垂径定理和勾股定理的综合,添加辅助线,构造直角三角形和弦心距,是解题的关键.15、1【分析】根据韦达定理可得,,将整理得到,代入即可.【详解】解:∵是一元二次方程的两个根,∴,,∴,故答案为:1.【点睛】本题考查韦达定理,掌握,是解题的关键.16、<a或﹣5<a<﹣1.【分析】首先可由二次函数的表达式求得二次函数图象与x轴的交点坐标,可知交点坐标是由a表示的,再根据题中给出的交点横坐标的取值范围可以求出a的取值范围.【详解】解:∵y=ax1+(a1﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x=﹣a或x=,∴抛物线与x轴的交点为(﹣a,0),(,0),由题意函数与x轴的一个交点坐标为(m,0)且1<m<5,∴当a>0时,1<<5,即<a;当a<0时,1<﹣a<5,即﹣5<a<﹣1;故答案为<a或﹣5<a<﹣1.【点睛】本题综合考查二次函数图象与与x轴的交点坐标以及一元一次不等式的解法,熟练掌握二次函数图象与坐标轴交点坐标的求法以及一元一次不等式的解法是解题关键.17、秒或1秒【分析】此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可【详解】解:(1)当△APQ∽△ABC时,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.,则AP=2t,CQ=3t,AQ=16-3t.于是=,解得,t=(2)当△APQ∽△ACB时,,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.则AP=2t,CQ=3t,AQ=16-3t.于是,解得t=1.故答案为t=或t=1.【点睛】此题考查了相似三角形的判定和性质,根据题意将对应边转换,得到两组相似三角形是解题的关键.18、x(x-1)=1【解析】试题分析:每人要赠送(x﹣1)张相片,有x个人,所以全班共送:(x﹣1)x=1.故答案是(x﹣1)x=1.考点:列一元二次方程.三、解答题(共78分)19、(1)∴.(2)m=2或3.【解析】(1)利用一元二次方程求根根式解方程.(2)利用(1)中x的值来确定m的值.【详解】解:(1)根据题意得m≠1,△=(–2m)2-4(m-1)(m+1)=4,∴.(2)由(1)知,∵方程的两个根都是正整数,∴是正整数.∴m-1=1或2..∴m=2或3.考点:公式法解一元二次方程,一元二次方程的解.20、(1)画图见解析;(2)画图见解析.【解析】(1)先连接矩形的对角线交于点O,再连接MO并延长,交AD于P,则点P即为AD的中点;(2)先运用(1)中的方法,画出AD的中点P,再连接BP,交AC于点K,则点E,再连接DK并延长,交AB于点Q,则点Q即为AB的中点.【详解】(1)如图点P即为所求;(2)如图点Q即为所求;【点睛】本题考查的是作图的应用,掌握矩形的性质和三角形中位线定理、正确作出图形是解题的关键.21、(1);(2).【分析】(1)解答时根据条件找出规律解答,先找出奇数,然后求概率.(2)熟悉列表法或画树状图法,求出数字相同的概率.【详解】(1)∵共有3张纸牌,其中数字是奇数的有2张,∴甲从中随机抽取一张牌,抽取的数字为奇数的概率为,故答案为.(2)列表如下:由表知,共有9种等可能结果,其中两人抽取的数字相同的有3种结果,所以两人抽取的数字相同的概率为=.【点睛】此题重点考察学生对概率的实际应用能力,抓住概率的计算公式,理解列表法或画树状图法是解题的关键.22、(1);(2);(3)变化.证明见解析.【分析】(1)证明△APE≌△PCF,得PE=CF;在Rt△PCF中,解直角三角形求得的值即可;(2)如答图1所示,作辅助线,构造直角三角形,证明△PME∽△PNF,并利用(1)的结论,求得的值;(3)如答图2所示,作辅助线,构造直角三角形,首先证明△APM∽△PCN,求得;然后证明△PME∽△PNF,从而由求得的值.与(1)(2)问相比较,的值发生了变化.【详解】(1)∵矩形ABCD,∴AB⊥BC,PA=PC.∵PE⊥AB,BC⊥AB,∴PE∥BC.∴∠APE=∠PCF.∵PF⊥BC,AB⊥BC,∴PF∥AB.∴∠PAE=∠CPF.∵在△APE与△PCF中,∠PAE=∠CPF,PA=PC,∠APE=∠PCF,∴△APE≌△PCF(ASA).∴PE=CF.在Rt△PCF中,,∴;(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN.又∵∠PME=∠PNF=90°,∴△PME∽△PNF.∴.由(1)知,,∴.(3)变化.证明如下:如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN.∴△APM∽△PCN.∴,得CN=2PM.在Rt△PCN中,,∴.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN.又∵∠PME=∠PNF=90°,∴△PME∽△PNF.∴.∴的值发生变化.23、(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3)2≤t<.【解析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【详解】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=-2a,∴y=ax2+ax+b=ax2+ax-2a=a(x+)2-,∴抛物线顶点D的坐标为(-,-);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=-2,∴y=2x-2,则,得ax2+(a-2)x-2a+2=0,∴(x-1)(ax+2a-2)=0,解得x=1或x=-2,∴N点坐标为(-2,-6),∵a<b,即a<-2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为,∴E(-,-3),∵M(1,0),N(-2,-6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(-2)-1|•|--(-3)|=−−a,(3)当a=-1时,抛物线的解析式为:y=-x2-x+2=-(x+)2+,由,-x2-x+2=-2x,解得:x1=2,x2=-1,∴G(-1,2),∵点G、H关于原点对称,∴H(1,-2),设直线GH平移后的解析式为:y=-2x+t,-x2-x+2=-2x+t,x2-x-2+t=0,△=1-4(t-2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点睛】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.24、(1)面料的单价为3元/米,里料的单价为2元/米;(2)①5;②5%.【分析】(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米,根据成本为1元列出一元一次方程,从而得出答案;(2)、设打折数为m,根据利润不低于4元列出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论