版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届扬州地区部分县九年级数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A. B. C. D.2.如图,正方形ABCD中,AD=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,延长DF交BC与点M,连接BF、DG.以下结论:①∠BFD+∠ADE=180°;②△BFM为等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6⑥sin∠EGB=;其中正确的个数是()A.3 B.4 C.5 D.63.已知⊙O的半径是4,OP=5,则点P与⊙O的位置关系是()A.点P在圆上 B.点P在圆内 C.点P在圆外 D.不能确定4.若数据,,…,的众数为,方差为,则数据,,…,的众数、方差分别是()A., B., C., D.,5.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,母线长为1.则这个圆锥的侧面积是()A.4π B.1π C.π D.2π6.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A. B.C. D.7.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个 B.1个 C.2个 D.1个或2个8.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是()A.k<1且k≠0 B.k≤1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠09.在中,,,,则的值是()A. B. C. D.10.在平面直角坐标系xoy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,若B点的对应点B′的坐标为(﹣6,0),则A点的对应点A′坐标为()A.(﹣2,﹣4) B.(﹣4,﹣2) C.(﹣1,﹣4) D.(1,﹣4)11.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇12.小明使用电脑软件探究函数的图象,他输入了一组,的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的,的值满足()A., B., C., D.,二、填空题(每题4分,共24分)13.如图,已知点A,C在反比例函数的图象上,点B,D在反比例函的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a−b的值是_______.14.如图,△ABC为⊙O的内接三角形,若∠OBA=55°,则∠ACB=_____.15.如图,已知梯形ABCO的底边AO在轴上,,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为__________.16.如图,是的边上一点,且点的横坐标为3,,则______.17.如图,位似图形由三角尺与其灯光下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角形的对应边长为_______㎝.18.如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为______.三、解答题(共78分)19.(8分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.20.(8分)小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们各自选择的数,就在做一次上述游戏,直至决出胜负.若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率.21.(8分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?22.(10分)△ABC在平面直角坐标系中如图:(1)画出将△ABC绕点O逆时针旋转90°所得到的,并写出点的坐标.(2)画出将△ABC关于x轴对称的,并写出点的坐标.(3)求在旋转过程中线段OA扫过的图形的面积.23.(10分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率.24.(10分)如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.(1)根据图象,直接写出满足的的取值范围;(2)求这两个函数的表达式;(3)点在线段上,且,求点的坐标.25.(12分)如图,在矩形ABCD中,AB=3,BC=4,点E是线段AC上的一个动点且=k(0<k<1),点F在线段BC上,且DEFH为矩形;过点E作MN⊥BC,分别交AD,BC于点M,N.(1)求证:△MED∽△NFE;(2)当EF=FC时,求k的值.(3)当矩形EFHD的面积最小时,求k的值,并求出矩形EFHD面积的最小值.26.已知抛物线经过点和点.求抛物线的解析式;求抛物线与轴的交点的坐标(注:点在点的左边);求的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】随机事件A的概率事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率,故选D.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.2、C【分析】根据正方形的性质、折叠的性质、三角形外角的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理对各个选项依次进行判断、计算,即可得出答案.【详解】解:正方形ABCD中,,E为AB的中点,,,,
沿DE翻折得到,
,,,,
,,
,
又,
,
,∴,又∵,,∴∠BFD+∠ADE=180°,故①正确;∵,,∴又∵,,∴,∴MB=MF,∴△BFM为等腰三角形;故②正确;,,
∴,∴,又∵,∴,∵,,∴,
∽,故正确;
,,,
∵在和中,,
≌,,
设,则,,
在中,由勾股定理得:,
解得:,∴EG=5,,,∴sin∠EGB=,故⑥正确;
∵,,,∴,又∵,∴∽,∴∴BE=2FM,故④正确;∽,且,设,则,
在中,由勾股定理得:,
解得:舍去或,
,故错误;故正确的个数有5个,故选:C.【点睛】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数等知识,本题综合性较强,证明三角形全等和三角形相似是解题的关键.3、C【分析】根据“点到圆心的距离大于半径,则点在圆外”即可解答.【详解】解:∵⊙O的半径是4,OP=5,5>4即点到圆心的距离大于半径,∴点P在圆外,故答案选C.【点睛】本题考查了点与圆的位置关系,通过比较点到圆心的距离与半径的大小确定点与圆的位置关系.4、C【分析】根据众数定义和方差的公式来判断即可,数据,,…,原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变.【详解】解:∵数据,,…,的众数为,方差为,∴数据,,…,的众数是a+2,这组数据的方差是b.故选:C【点睛】本题考查了众数和方差,当一组数据都增加时,众数也增加,而方差不变.5、B【分析】根据圆锥的侧面积,代入数进行计算即可.【详解】解:圆锥的侧面积2π×1×1=1π.故选:B.【点睛】本题主要考查了圆锥的计算,掌握圆锥的计算是解题的关键.6、A【解析】首先进行移项,然后把二次项系数化为1,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.【详解】∵ax2+bx+c=0,∴ax2+bx=−c,∴x2+x=−,∴x2+x+=−+,∴(x+)2=.故选A.7、D【分析】根据垂线段最短,得圆心到直线的距离小于或等于4cm,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离;即可得出公共点的个数.【详解】解:根据题意可知,圆的半径r=4cm.∵OP=4cm,当OP⊥l时,直线和圆是相切的位置关系,公共点有1个;当OP与直线l不垂直时,则圆心到直线的距离小于4cm,所以是相交的位置关系,公共点有2个.∴直线L与⊙O的公共点有1个或2个,故选D.【点睛】本题考查了直线与圆的位置关系.特别注意OP不一定是圆心到直线的距离.8、B【分析】根据一元二次方程的根的判别式即可求出答案.【详解】解:由题意可知:△=4﹣4k≥0,∴k≤1,∵k≠0,∴k≤1且k≠0,故选:B.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.9、A【分析】根据正弦函数是对边比斜边,可得答案.【详解】解:sinA==.故选A.【点睛】本题考查了锐角正弦函数的定义.10、A【分析】根据相似比为2,B′的坐标为(﹣6,0),判断A′在第三象限即可解题.【详解】解:由题可知OA′:OA=2:1,∵B′的坐标为(﹣6,0),∴A′在第三象限,∴A′(﹣2,﹣4),故选A.【点睛】本题考查了图形的位似,属于简单题,确定A′的象限是解题关键.11、D【分析】根据事件发生的可能性大小判断.【详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、D【分析】由图象可知,当x>0时,y<0,可知a<0;图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,则b<0;【详解】由图象可知,当x>0时,y<0,∴a<0;∵图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,∴b<0;故选:D.【点睛】本题考查函数的图象;能够通过已学的反比例函数图象确定b的取值是解题的关键.二、填空题(每题4分,共24分)13、【分析】利用反比例函数k的几何意义得出a-b=4•OE,a-b=5•OF,求出=6,即可求出答案.【详解】如图,∵由题意知:a-b=4•OE,a-b=5•OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征,能求出方程=6是解此题的关键.14、35°【分析】先利用等腰三角形的性质得∠OAB=∠OBA=55°,再根据三角形内角和定理,计算出∠AOB=70°,然后根据圆周角定理求解.【详解】∵OA=OB,∴∠OAB=∠OBA=55°,∴∠AOB=180°﹣55°×2=70°,∴∠ACB=∠AOB=35°.故答案为:35°.【点睛】本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半,是解题的关键.15、【分析】设C(x,y),BC=a.过D点作DE⊥OA于E点.根据DE∥AB得比例线段表示点D坐标;根据△OBC的面积等于3得关系式,列方程组求解.【详解】设C(x,y),BC=a.则AB=y,OA=x+a.过D点作DE⊥OA于E点.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比为OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D点在反比例函数的图象上,且D((x+a),y),∴y•(x+a)=k,即xy+ya=9k,∵C点在反比例函数的图象上,则xy=k,∴ya=8k.∵△OBC的面积等于3,∴ya=3,即ya=1.∴8k=1,k=.故答案为:.16、【分析】由已知条件可得出点P的纵坐标为4,则就等于点P的纵坐标与其横坐标的比值.【详解】解:由题意可得,∵,∴点P的纵坐标为4,∴就等于点P的纵坐标与其横坐标的比值,∴.故答案为:.【点睛】本题考查的知识点是正弦与正切的定义,熟记定义内容是解此题的关键.17、20cm【详解】解:∵位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,三角尺的一边长为8cm,∴投影三角形的对应边长为:8÷=20cm.故选B.【点睛】本题主要考查了位似图形的性质以及中心投影的应用,根据对应边的比为2:5,再得出投影三角形的对应边长是解决问题的关键.18、(6,0)【详解】解:过点P作PM⊥AB于M,则M的坐标是(4,0)∴MB=MA=4-2=2,∴点B的坐标为(6,0)三、解答题(共78分)19、(1);(2).【分析】(1)共四种垃圾,厨余垃圾一种,所以甲拿了一袋垃圾恰好厨余垃圾的概率为:;(2)直接画出树状图,利用树状图解题即可【详解】解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,∵垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为【点睛】本题考查概率的计算以及树状图算概率,掌握树状图法是解题关键20、.【解析】试题分析:列表得出所有等可能的情况数,找出两指针所指数字的和为5情况数,即可确定小军胜的概率.试题解析:列表如下:所有等可能的情况有16种,其中两指针所指数字的和为5的情况有4种,所以小军获胜的概率==.考点:列表法与树状图法.21、每轮感染中平均一台电脑感染11台.【分析】设每轮感染中平均一台电脑感染x台,根据经过两轮被感染后就会有(1+x)2台电脑被感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设每轮感染中平均一台电脑感染x台,依题意,得:(1+x)2=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮感染中平均一台电脑感染11台.【点睛】本题考查了一元二次方程的应用-传播问题,掌握传播问题中的等量关系,正确列出一元二次方程是解题的关键.22、(1)(-3,2);(2)(2,-3);(3)S=【分析】(1)根据题意利用旋转作图的方法画出将△ABC绕点O逆时针旋转90°所得到的以及写出点的坐标即可;(2)根据题意利用作轴对称图形的方法画出将△ABC关于x轴对称的并写出点的坐标即可;(3)由题意可知OA扫过的图形是一个以OA长为半径的四分之一的圆,求出这个四分之一的圆即可求出线段OA扫过的图形的面积.【详解】解:(1)如图:由图像可得的坐标为(-3,2);(2)如图:由图像可得的坐标为(2,-3);(3)由题意可知OA扫过的图形是一个以OA长为半径的四分之一的圆,已知A(2,3),利用勾股定理求得OA=,所以线段OA扫过的图形的面积为:=.【点睛】本题考查旋转作图和作轴对称图形,熟练掌握并利用旋转作图和作轴对称图形的方法和技巧是解题的关键.23、(1);(2),见解析【分析】(1)袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,摸到红球的概率即可求出;(2)分别使用树状图法或列表法将抽取球的结果表示出来,第一次共有3种不同的抽取情况,第二次有2种不同的抽取情况,所有等可能出现的结果有6种,找出两次都是白球的的抽取结果,即可算出概率.【详解】解:(1)∵袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,∴;(2)画树状图,根据题意,画树状图结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴;用列表法,根据题意,列表结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴.【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.24、(1)或;(2),;(3)【分析】(1)观察图象得到当或时,直线y=k1x+b都在反比例函数的图象上方,由此即可得;(2)先把A(-1,4)代入y=可求得k2,再把B(4,n)代入y=可得n=-1,即B点坐标为(4,-1),然后把点A、B的坐标分别代入y=k1x+b得到关于k1、b的方程组,解方程组即可求得答案;(3)设与轴交于点,先求出点C坐标,继而求出,根据分别求出,,再根据确定出点在第一象限,求出,继而求出P点的横坐标,由点P在直线上继而可求出点P的纵坐标,即可求得答案.【详解】(1)观察图象可知当或,k1x+b>;(2)把代入,得,∴,∵点在上,∴,∴,把,代入得,解得,∴;(3)设与轴交于点,∵点在直线上,∴,,又,∴,,又,∴点在第一象限,∴,又,∴,解得,把代入,得,∴.【点睛】本题考查了一次函数与反比例函数的综合题,涉及了待定系数法,函数与不等式,三角形的面积等,熟练掌握相关知识是解题的关键.注意数形结合思想的应用.25、(1)见解析;(2);(3)矩形EFHD的面积最小值为,k=.【分析】(1)由矩形的性质得出∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,证出∠EMD=∠FNE=90°,∠NEF=∠MDE,即可得出△MED∽△NFE;(2)设AM=x,则MD=NC=4﹣x,由三角函数得出ME=x,得出NE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校法律顾问合同(2篇)
- 航空业复工复产疫情防控策略方案
- PPP项目文化创意产业合作协议
- 绿色建筑玻璃幕墙系统方案
- 医疗设备供货计划与应急保障方案
- 清廉国企建设的财务管理方案
- 职场新人礼仪适应方案
- 旅游景点临时餐饮保障方案
- 夏季绿化养护注意事项方案
- 人教版一年级数学上随堂1 专项一 计算
- 我会洗手(洗手知识科普)课件
- 社会学概论第五章 社会互动课件
- 【教学课件】第3单元《土和火的艺术》示范课件
- 2022全国119消防安全日消防安全主题班会课件
- 烟草500品牌知识汇总(题库版)
- 丰胸小知识课件
- 同意未成年人姓名变更的声明
- 《统计学基础(英文版·第7版)》教学课件les7e-05-01
- 善待他人关爱自己主题班会-课件
- 测试计划-10篇模板
- 苏科版2022-2023二年级上册劳动与技术《07小鸟归巢》教案
评论
0/150
提交评论