版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四节反比例函数
辽宁近年中考真题精选1
考点精讲2
重难点分层练3反比例函数的图象与性质辽宁近年中考真题精选1命题点1.(2023抚顺14题3分)已知A(x1,y1),B(x2,y2)是反比例函数y=-图象上的两点,且x1>x2>0,则y1________y2(填“>”或“<”).>辽宁其他地市真题2.(2020营口5题3分)反比例函数y=(x<0)的图象位于(
)A.第一象限 B.第二象限C.第三象限 D.第四象限3.(2023阜新5题3分·源自北师九上P161复习题第3题改编)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是(
)A.m<0 B.m>0 C.m>-1 D.m<-1CD4.(2023阜新5题3分)反比例函数y=
的图象经过点(3,-2),下列各点在图象上的是(
)A.(-3,-2) B.(3,2)C.(-2,-3) D.(-2,3)D反比例函数解析式的确定(沈阳4考;抚顺、本溪、铁岭、辽阳、葫芦岛近5年连续考查)2命题点类型一由点坐标求解析式5.(2022沈阳9题2分·源自北师九上P161复习题第1题改编)点A(-3,2)在反比例函数y=(k≠0)的图象上,则k的值是(
)A.-6 B.- C.-1 D.6A6.(2023本溪9题3分)如图,△ABC的顶点A在反比例函数y=(x>0)的图象上,顶点C在x轴上,AB∥x轴,若点B的坐标为(1,3),S△ABC=2,则k的值为(
)A.4 B.-4 C.7 D.-7第6题图C7.(2022本溪9题3分)如图,点A在第二象限,点B在x轴的负半轴上,AB=AO=13,线段OA的垂直平分线交线段AB于点C,连接OC,△BOC的周长为23,若反比例函数y=的图象经过点A,则k的值为(
)A.30 B.-30 C.60 D.-60第7题图D8.(2020铁岭葫芦岛9题3分)如图,矩形ABCD的顶点D在反比例函数y=(x>0)的图象上,点E(1,0)和点F(0,1)在AB边上,AE=EF,连接DF,DF∥x轴,则k的值为(
)A.2 B.3 C.4 D.4第8题图C9.(2020沈阳14题3分)如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为_____.第9题图610.(2023辽阳17题3分)如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=(x<0)的图象经过点B和CD边中点E,则k的值为________.第10题图-411.(2022抚顺16题3分)如图,矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,若点A的坐标为(3,4),AB=2,AD∥x轴,则点C的坐标为________.第11题图(6,2)类型二由k的几何意义求解析式12.(2021沈阳14题3分)如图,平面直角坐标系中,O是坐标原点,点A
是反比例函数y=(k≠0)图象上的一点,过点A分别作AM⊥x
轴于点M
,AN⊥y轴于点N.若四边形AMON的面积为12,则k的值是_____.第12题图-1213.(2020抚顺本溪辽阳17题3分)如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为________.第13题图314.(2023铁岭17题3分)如图,Rt△AOB≌Rt△COD,直角边分别落在x轴和y轴上,斜边相交于点E,且tan∠OAB=2,若四边形OAEC的面积为6,反比例函数y=(x>0)的图象经过点E,则k的值为_____.第14题图415.(2021抚顺铁岭17题3分)如图,△AOB中,AO=AB,OB在x轴上,C、D分别为AB,OB的中点,连接CD,E为CD上任意一点,连接AE、OE,反比例函数y=(x>0)的图象经过点A,若△AOE的面积为2,则k的值是______.第15题图4辽宁其他地市真题16.(2023锦州8题2分)如图,矩形OABC中,A(1,0),C(0,2),双曲线y=(0<k<2)的图象分别交AB,CB于点E,F,连接OE,OF,EF,S△OEF=2S△BEF,则k值为(
)A. B.1 C. D.第16题图A17.(2021朝阳8题3分)如图,O是坐标原点,点B在x轴上,在△OAB中,AO=AB=5,OB=6,点A在反比例函数y=(k≠0)的图象上,则k的值为(
)A.-12 B.-15 C.-20 D.-30第17题图A18.(2021锦州15题3分)如图,在平面直角坐标系中,OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D,若CD=2BD,OABC的面积为15,则k的值为________.第18题图1819.(2022营口14题3分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作ABCD,点C,D在x轴上,若S▱ABCD=5,则k=______.第19题图-320.(2023锦州14题3分)如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=-和y=的图象上,则k的值为________.第20题图12反比例函数与几何图形综合3命题点21.(2022抚顺9题3分)如图,菱形ABCD的边AD与x轴平行,A,B两点的横坐标分别为1和3,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积是(
)A.4 B.4 C.2 D.2第21题图A22.(2023本溪17题3分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为________.第22题图23.(2021本溪辽阳葫芦岛17题3分)如图,AB是半圆的直径,C为半圆的中点,A(2,0),B(0,1),反比例函数y=(x>0)的图象经过点C,则k的值为________.第23题图24.(2020辽宁20题12分)如图,A,B两点的坐标分别为(-2,0),(0,3),将线段AB绕点B逆时针旋转90°得到线段BC,过点C作CD⊥OB,垂足为D,反比例函数y=的图象经过点C.(1)直接写出点C的坐标,并求反比例函数的解析式;第24题图解:(1)点C的坐标为(3,1),∵点C在反比例函数y=的图象上,∴k=3×1=3,∴反比例函数的解析式为y=;(2)点P在反比例函数y=的图象上,当△PCD的面积为3时,求点P的坐标.第24题图(2)∵S△PCD=3,∴·DC·|yP-1|=3,解得yP=-1或3,∴点P的坐标为(1,3)或(-3,-1).25.(2023辽阳22题12分)如图,在平面直角坐标系中,矩形OABC的边BC交x轴于点D,AD⊥x轴,反比例函数y=(x>0)的图象经过点A,点D的坐标为(3,0),AB=BD.(1)求反比例函数的解析式;解:(1)∵四边形OABC是矩形,∴OA∥BC,∠OAB=∠ABD=90°.∴∠OAD=∠ADB.第25题图∵AD⊥x轴,∴∠ADO=90°.∴∠ADO=∠ABD.∴△ADO∽△DBA.∴.∵AB=BD,∴AD=OD.∵D点坐标为(3,0).∴OD=AD=3,∴点A坐标为(3,3),将点A(3,3)代入y=,得k=9.∴反比例函数的解析式为y=(x>0);第25题图(2)点P为y轴上一动点,当PA+PB的值最小时,求出点P的坐标.(2)如解图,过点B作BE⊥AD于点E,∵AB=BD,∴DE=AE=AD=.∴BE=AD=.∴OD+BE=3+=.∴B点坐标为(,).E第25题图得解得此时PA+PB的值最小,PA+PB=PA′+PB=A′B.设直线A′B的解析式为y=k1x+b(k1≠0),将A′(-3,3),B(,)代入函数解析式中,
则直线A′B的解析式为y=-x+.∴令x=0,则y=.∴点P的坐标为(0,).EA'作点A关于y轴的对称点A′,坐标为(-3,3),连接A′B交y轴于点P,P第25题图反比例函数与一次函数结合4命题点26.(2021本溪辽阳葫芦岛6题3分)反比例函数y=的图象分别位于第二、四象限,则直线y=kx+k不经过的象限是(
)A.第一象限 B.第二象限C.第三象限 D.第四象限第27题图A27.(2022沈阳15题3分)如图,正比例函数y1=k1x的图象与反比例函数y2=(x>0)的图象相交于点A(,2),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是_______.第27题图28.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;第28题图(1)解:如解图,过点C作CE⊥x轴于点E,E∵C(2,4),点B是AC的中点,∴B(0,2).将B(0,2),C(2,4)分别代入y=k1x+b中,∴一次函数的解析式为y=x+2.将C(2,4)代入y=中,得4=,∴k2=8.∴反比例函数的解析式为y=;得,解得,第28题图E(2)求△COD的面积;∵点D在第三象限,∴D(-4,-2).∴S△COD=S△BOC+S△BOD=×2×2+×2×4=6;(2)由,解得,或第28题图E(3)直接写出当x取什么值时,k1x+b<.(3)0<x<2或x<-4.第28题图E29.如图,直线y=3x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标是1.(1)求点A的坐标及双曲线的解析式;第29题图解:(1)∵点A的横坐标是1,将x=1代入y=3x中,得y=3,∴点A的坐标为(1,3),将点A(1,3)代入y=中,得k=3,∴双曲线的解析式为y=(x>0);(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB、AB,求△AOB的面积.第29题图(2)如解图,过点A作AC⊥x轴于点C,过点B作BD⊥AC于点D,AC交OB于点E.∵点B在双曲线y=上,且纵坐标为1,∴xB=3,∴点B的坐标为(3,1),∴BD=3-1=2,EDC设直线OB的解析式为y=k1x(k1≠0),将B(3,1)代入解析式中,得3k1=1,∴k1=,∴直线OB的解析式为y=x,∴当x=1时,y=,∴点E的坐标为(1,),∴AE=3-=,∴S△AOB=S△AOE+S△ABE=AE·OC+AE·BD
=××1+××2=4.第29题图EDC图象与性质k的几何意义反比例函数中常见的有关图形面积的计算k的几何意义解析式的确定待定系数法利用k的几何意义反比例函数考点精讲【对接教材】北师:九上第六章P148~P162;
人教:九下第二十六章P1~P22.图象与性质解析式y=(k为常数,k≠0)x,y的取值范围x≠0,y≠0k(决定函数图象所在象限及增减性)k
0k
0图象(草图)
><图象与性质所在象限第________象限(x,y同号)第_________象限(x,y异号)图象特征图象无限接近坐标轴,但与坐标轴永不相交增减性在每一象限内,y随x的增大而_______在每一象限内,y随x的增大而______对称性关于原点成中心对称;关于直线y=x及y=-x成轴对称)一、三二、四减小增大k的几何意义1.k的几何意义:如图,过反比例函数图象上任一点P(a,b)分别作,x轴、y轴的垂线PM、PN,所得矩形PMON的面积,S=PN·PM=|a|·|b|=________2.反比例函数中常见的有关图形面积的计算:(点B在y轴上运动)(点A在x轴上运动)(P′为P关于原点的对称点)S△AOP=______S△APB=______
S△APP′=______S△ABP=______一般反比例函数与几何图形(三角形、四边形)结合,可直接利用k的几何意义求面积.若图形为不规则图形,则可将其割补,求面积之和(或差),具体方法见微专题平面直角坐标系中的面积问题k的几何意义●满分技法解析式的确定利用k的几何意义:由图形面积得|k|,再结合函数图象所在象限判断k的符号,确定k值,即可得到反比例函数解析式y=待定系数法1.设出反比例函数解析式y=(k≠0)2.找出反比例函数图象上一点P(a,b)3.将点P(a,b)代入解析式得k=ab4.确定反比例函数解析式y=重难点分层练回顾必备知识例1已知反比例函数y=(k≠0).(1)若该反比例函数的图象在第一、三象限,则k的取值范围为______;(2)若点(-2,3),(4,n)在该反比例函数的图象上,则函数的解析式为________,该反比例函数的图象在第_________象限,且在每一个象限内,y的值随x的增大而_________(填“增大”或“减小”),n的值为_______;k>0二、四增大(3)若正比例函数过点P(2,3)与反比例函数的图象相交于两点,则另外一点的坐标为___________;(4)若k>0,点(-2,y1),(2,y2),(4,y3)都在反比例函数图象上,则y1,y2,y3的大小关系是______________________;(-2,-3)y2>y3>y1(y1<y3<y2)(5)点P(2,3)是反比例函数图象上一点.①如图①,过点P作PA⊥x轴于点A,PB⊥y轴于点B,则四边形OAPB的面积为________;②如图②,连接OP,过点P作PA⊥y轴于点A,则△OPA的面积为________;例1题图63③如图③,连接PO并延长,与反比例函数y=的图象在第三象限交于点Q,过点P,Q分别作x轴、y轴的垂线,两垂线交于点M,则△MPQ的面积为_______.例1题图12提升关键能力例2已知点A(1,4)是反比例函数y=图象上的一点.(1)如图①,过点A作AC⊥y轴,交y轴于点C,点B为x轴上一动点,连接AB、BC,则△ABC的面积为______.例2题图①2例2题图②(2)如图②,在(1)的条件下,作ACBD,则ACBD的面积为_____.(3)如图③,在另外一支上取一点E,点E的横坐标为-6,连接AE、AO、EO,则△AEO的面积为________.例2题图③4(4)如图④,以点A为顶点,作矩形AGHI,点H也在反比例函数的图象上,且点G的纵坐标为.则矩形AGHI的面积为________.(5)如图⑤,以点A为顶点作等腰三角形ALN,延长AN交x轴于点M,连接LM,若AN=AM,则△LMN的面积为________.例2题图④例2题图⑤3例3如图,一次函数y1=x+b的图象与反比例函数y2=(x<0)的图象交于点A(-2,1),B两点,连接AO、BO.(1)根据函数图象写出不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保证保险行业经营分析报告
- 个人背景调查行业市场调研分析报告
- 玩具箱家具市场分析及投资价值研究报告
- 衬裙项目运营指导方案
- 自行车脚踏车轮圈市场分析及投资价值研究报告
- 回热式换热器产品供应链分析
- 空白盒式录像带产品供应链分析
- 公共关系传播策略咨询行业经营分析报告
- 医疗设备租赁行业经营分析报告
- 为残障人士提供医疗咨询行业营销策略方案
- 预防诺如病毒教案
- 比尾巴(全国一等奖)
- 如何做好船舶成本管理
- 比亚迪e6说明书
- 超市财务部流程
- 小儿腹泻 课件
- 渠道管理PPT(第3版)完整全套教学课件
- 《新时代劳动教育》-02新时代劳动价值观课件
- 寝室矛盾情景剧剧本
- 【典型案例】长江流域浙江的历史发展:人民群众是社会物质财富的创造者
- 第22课《梦回繁华》一等奖创新教学设计 部编版语文八年级上册
评论
0/150
提交评论