版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市福田区八校2025届九上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的大小等于()A.25° B.20° C.40° D.50°2.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为A. B.5 C.4 D.33.表中所列的7对值是二次函数图象上的点所对应的坐标,其中x……y…7m14k14m7…根据表中提供的信息,有以下4个判断:①;②;③当时,y的值是k;④其中判断正确的是()A.①②③ B.①②④ C.①③④ D.②③④4.在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B(0,3),对称轴是直线x=-1.则下列结论正确的是()A.ac>0 B.b2-4ac=0 C.a-b+c<0 D.当-3<x<1时,y>05.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.106.如图,▱ABCD的对角线AC,BD相交于点O,且AC=10,BD=12,CD=m,那么m的取值范围是()A.10<m<12 B.2<m<22 C.5<m<6 D.1<m<117.已知二次函数(是实数),当自变量任取,时,分别与之对应的函数值,满足,则,应满足的关系式是()A. B.C. D.8.如图,四边形内接于,若,则()A. B. C. D.9.如图,网格中的两个三角形是位似图形,它们的位似中心是()A.点A B.点B C.点C D.点D10.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.两个相似三角形的面积比为4:9,那么它们对应中线的比为______.12.如图,的顶点和分别在轴、轴的正半轴上,且轴,点,将以点为旋转中心顺时针方向旋转得到,恰好有一反比例函数图象恰好过点,则的值为___________.13.如图,由10个完全相同的正三角形构成的网格图中,如图所示,则=______.14.如图,是⊙O上的点,若,则___________度.15.如图所示,在中,、相交于点,点是的中点,联结并延长交于点,如果的面积是4,那么的面积是______.16.如图,平面直角坐标系中,等腰的顶点分别在轴、轴的正半轴,轴,点在函数的图象上.若则的值为_____.17.将抛物线y=x2向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是________.18.若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______.三、解答题(共66分)19.(10分)江华瑶族自治县香草源景区2016年旅游收入500万元,由于政府的重视和开发,近两年旅游收入逐年递增,到今年2018年收入已达720万元.(1)求这两年香草源旅游收入的年平均增长率.(2)如果香草源旅游景区的收入一直保持这样的平均年增长率,从2018年算起,请直接写出n年后的收入表达式.20.(6分)感知定义在一次数学活动课中,老师给出这样一个新定义:如果三角形的两个内角α与β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=10,弦AD=6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.21.(6分)如图,是两棵树分别在同一时刻、同一路灯下的影子.(1)请画出路灯灯泡的位置(用字母表示)(2)在图中画出路灯灯杆(用线段表示);(3)若左边树的高度是4米,影长是3米,树根离灯杆底的距离是1米,求灯杆的高度.22.(8分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.23.(8分)己知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点,(1)求抛物线解析式:(2)当点运动到什么位置时,的面积最大?24.(8分)定义:如果函数C:()的图象经过点(m,n)、(-m,-n),那么我们称函数C为对称点函数,这对点叫做对称点函数的友好点.例如:函数经过点(1,2)、(-1,-2),则函数是对称点函数,点(1,2)、(-1,-2)叫做对称点函数的友好点.(1)填空:对称点函数一个友好点是(3,3),则b=,c=;(2)对称点函数一个友好点是(2b,n),当2b≤x≤2时,此函数的最大值为,最小值为,且=4,求b的值;(3)对称点函数()的友好点是M、N(点M在点N的上方),函数图象与y轴交于点A.把线段AM绕原点O顺时针旋转90°,得到它的对应线段A′M′.若线段A′M′与该函数的图象有且只有一个公共点时,结合函数图象,直接写出a的取值范围.25.(10分)如图,A,B,C为⊙O上的定点.连接AB,AC,M为AB上的一个动点,连接CM,将射线MC绕点M顺时针旋转90°,交⊙O于点D,连接BD.若AB=6cm,AC=2cm,记A,M两点间距离为xcm,B,D两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东探究的过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表,补全表格:x/cm00.250.47123456y/cm1.430.6601.312.592.761.660(2)在平面直角坐标系xOy中,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BD=AC时,AM的长度约为cm.26.(10分)某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为元()时,每周的销售量(件)满足关系式:.(1)若每周的利润为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?(2)当时,求每周获得利润的取值范围.
参考答案一、选择题(每小题3分,共30分)1、C【解析】连接OA,根据切线的性质,即可求得∠C的度数.【详解】如图,连接OA.∵AC是⊙O的切线,∴∠OAC=90°.∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选C.【点睛】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.2、B【解析】试题分析:∵∠BAC=∠BOD,∴.∴AB⊥CD.∵AE=CD=8,∴DE=CD=1.设OD=r,则OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=1,OE=8﹣r,∴OD2=DE2+OE2,即r2=12+(8﹣r)2,解得r=2.故选B.3、B【分析】根据表格得到二次函数的性质,分别求出开口方向,对称轴、最值即可解题.【详解】解:由表格中的数据可知,当时,y的值先变大后减小,说明二次函数开口向下,所以①正确;同时可以确定对称轴在与之间,所以在对称轴左侧可得②正确;因为不知道横坐标之间的取值规律,所以无法说明对称轴是直线x=,所以此时顶点的函数值不一定等于k,所以③当时,y的值是k错误;由题可知函数有最大值,此时,化简整理得:④正确,综上正确的有①②④,故选B.【点睛】本题考查了二次函数的性质,中等难度,将表格信息转换成有效信息是解题关键.4、D【分析】根据二次函数图象和性质逐项判断即可.【详解】解:∵抛物线y=ax2+bx+c的图象开口向下,与y轴交于点B(0,3),∴a<0,c>0,∴ac<0,故A选项错误;∵抛物线y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故B选项错误;∵对称轴是直线x=-1,∴当x=-1时,y>0,即a-b+c>0,故C选项错误;∵抛物线y=ax2+bx+c对称轴是直线x=-1,与x轴交于A(1,0),∴另一个交点为(-3,0),∴当-3<x<1时,y>0,故D选项正确.故选:D.【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的图象和性质是解题的关键.5、D【详解】解:在Rt△ABC中,∠C=90°,sinA==,BC=6∴AB==10,故选D.考点:解直角三角形;6、D【分析】先根据平行四边形的性质,可得出OD、OC的长,再根据三角形三边长关系得出m的取值范围.【详解】∵四边形ABCD是平行四边形,AC=10,BD=12∴OC=5,OD=6∴在△OCD中,OD-OC<CD<OD+OC,即1<m<11故选:D.【点睛】本题考查平行四边形的性质和三角形三边长关系,解题关键是利用平行四边形的性质,得出OC和OD的长.7、D【解析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|>|x2-3|.【详解】抛物线的对称轴为直线x=-=3,∵y1>y2,∴点(x1,y1)比点(x2,y2)到直线x=3的距离要大,∴|x1-3|>|x2-3|.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8、C【分析】根据圆内接四边形对角互补可得∠C=180°×=105°.【详解】∵∠A+∠C=180°,∠A:∠C=5:7,∴∠C=180°×=105°.故选:C.【点睛】此题主要考查了圆内接四边形,关键是掌握圆内接四边形对角互补.9、D【分析】利用对应点的连线都经过同一点进行判断.【详解】如图,位似中心为点D.故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.10、B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是,故选:B.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.二、填空题(每小题3分,共24分)11、2:1.【分析】根据相似三角形的面积的比等于相似比的平方进行计算即可;【详解】解:∵两个相似三角形的面积比为4:9,∴它们对应中线的比.故答案为:2:1.【点睛】本题主要考查了相似三角形的性质,掌握相似三角形的性质是解题的关键.12、-24【分析】先根据图形旋转的性质得BD=BA,∠DBA=90°,再得出轴,然后求得点D的坐标,最后利用待定系数法求解反比例函数的解析式即可.【详解】设DB与轴的交点为F,如图所示:∵以点为旋转中心顺时针方向旋转得到,点,轴∴BD=BA=6,∠DBA=90°∴轴∴DF=6-2=4∴点D的坐标为(-4,6)∵反比例函数图象恰好过点∴,解得:故填:【点睛】本题主要考查坐标与图形变化-旋转、待定系数法求反比例函数解析式,根据图形旋转的性质得出点D的坐标是关键.13、.【解析】给图中各点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【详解】给图中各点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴,∴cos(α+β)=.故答案为:.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.14、130°.【分析】在优弧AB上取点D,连接AD,BD,根据圆周角定理先求出∠ADB的度数,再利用圆内接四边形对角互补进行求解即可.【详解】在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=50°,∴∠ACB=180°﹣∠ADB=130°.故答案为130°.【点睛】本题考查了圆周角定理,圆内接四边形对角互补的性质,正确添加辅助线,熟练应用相关知识是解题的关键.15、36【分析】首先证明△AFE∽△CBE,然后利用对应边成比例,E为OA的中点,求出AE:EC=1:3,即可得出.【详解】在平行四边形ABCD中,AD∥BC,
则△AFE∽△CBE,
∴,
∵O为对角线的交点,
∴OA=OC,
又∵E为OA的中点,
∴AE=AC,
则AE:EC=1:3,
∴AF:BC=1:3,
∴即∴=36故答案为:36【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.16、4【分析】根据等腰三角形的性质和勾股定理求出AC的值,根据等面积法求出OA的值,OA和AC分别是点C的横纵坐标,又点C在反比例函数图像上,即可得出答案.【详解】∵△ABC为等腰直角三角形,AB=2∴BC=2,解得:OA=∴点C的坐标为又点C在反比例函数图像上∴故答案为4.【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C的横坐标.17、y=(x+4)2-2【解析】∵y=x2向左平移4个单位后,再向下平移2个单位.∴y=.故此时抛物线的解析式是y=.故答案为y=(x+4)2-2.点睛:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.18、m≤1【分析】利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得,
解得.
故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.三、解答题(共66分)19、(1)这两年香草源旅游收入的年平均增长率为20﹪;(2)【分析】(1)根据题意设这两年香草源旅游收入的年平均增长率为x,根据题意列出方程,求出方程的解即可得到结果;(2)由题意根据求出的增长率,以2018年收入为初始年求出n年后该县旅游收入即可.【详解】解:(1)设这两年香草源旅游收入的年平均增长率为x,依题意得,解得=20﹪;(舍去).答.这两年香草源旅游收入的年平均增长率为20﹪.(2)由香草源旅游景区的收入一直保持这样的平均年增长率以及2018年收入为720万元可得,香草源旅游景区n年后的收入为:=.答:n年后的收入表达式是.【点睛】本题考查一元二次方程的实际应用,弄清题意并根据题意找到等量关系列方程求解是解答本题的关键.20、(1)①证明见解析;②CE=;(2)当△ABC是“类直角三角形”时,AC的长为或.【分析】(1)①证明∠A+2∠ABD=90°即可解决问题.②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”,证明△ABC∽△BEC,可得,由此构建方程即可解决问题.(2)分两种情形:①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,可证∠C+2∠ABC=90°,利用相似三角形的性质构建方程即可解决问题.【详解】(1)①证明:如图1中,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD为“类直角三角形”;②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”,在Rt△ABC中,∵AB=5,BC=3,∴AC=,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°,∴∠A=∠CBE,∴△ABC∽△BEC,∴,∴CE=,(2)∵AB是直径,∴∠ADB=90°,∵AD=6,AB=10,∴BD=,①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB,则点F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F共线,∵∠C+∠ABC+∠ABF=90°,∴∠C=∠ABF,∴△FAB∽△FBC,∴,即,∴AC=.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,∴∠C+2∠ABC=90°,∵∠CAD=∠CBF,∠C=∠C,∴△DAC∽△FBC,∴,即,∴CD=(AC+6),在Rt△ADC中,[(ac+6)]2+62=AC2,∴AC=或﹣6(舍弃),综上所述,当△ABC是“类直角三角形”时,AC的长为或.【点睛】本题主要考查圆综合题,考查了相似三角形的判定和性质,“类直角三角形”的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.21、(1)见解析;(2)见解析;(3)灯杆的高度是米【分析】(1)直接利用中心投影的性质得出O点位置;(2)利用O点位置得出OC的位置;(3)直接利用相似三角形的性质得出灯杆的高度.【详解】解:(1)如图所示:O即为所求;(2)如图所示:CO即为所求;(3)由题意可得:△EAB∽△EOC,则,∵EB=3m,BC=1m,AB=4m,∴,解得:CO=,答:灯杆的高度是
米.【点睛】此题主要考查了相似三角形的应用,正确得出O点位置是解题关键.22、(1)证明见解析;(2)阴影部分的面积为.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.23、(1);(2)点运动到坐标为,面积最大.【分析】(1)用待定系数法即可求抛物线解析式.
(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t表示点F坐标,进而表示PF的长.把△PAB分成△PAF与△PBF求面积和,即得到△PAB面积与t的函数关系,配方即得到t为何值时,△PAB面积最大,进而求得此时点P坐标.【详解】解:(1)抛物线过点,,解这个方程组,得,抛物线解析式为.(2)如图1,过点作轴于点,交于点.时,,.直线解析式为.点在线段上方抛物线上,设...=点运动到坐标为,面积最大.【点睛】本题考查了二次函数的图象与性质,利用二次函数求三角形面积的最大值,关键在于把原三角形分割成有一边平行于y轴的两个三角形面积之和.24、(1)b=1,c=9;(2)b=0或b=或b=;(3)或【分析】(1)由题可知函数图象过点(3,3),(-3,-3),代入即可求出b,c的值;(2)代入函数的友好点,求出函数解析式y=x2+2bx-4b2=(x+b)2-5b2,再根据二次函数的图象及性质分三种情况分析讨论;(3)由推出,再根据“友好点”是M(2,2)N(-2,-2)旋转后M′(2,-2)A′(-4a,0),将(-4a,0)代得出,根据图象即可得出结论.【详解】解:(1)由题可知函数图象过点(3,3),(-3,-3),代入函数(),得解得:b=1,c=9;(2)由题意得另一个友好数为(-2b,-n)∴-n=4b2-4b2+c∴c=-n∴y=x2+2bx-n把(2b,n)代入y=x2+2bx-nn=4b2+4b2-n∴n=4b2∴y=x2+2bx-4b2=(x+b)2-5b2当-b<2b即b>0时∵抛物线开口向上∴在对称轴右侧,y随x增大而增大∴当x=2b时,y1=4b2当x=2时,y2=-4b2+4b+4∵y1-y2=4∴-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度综合金融服务合同
- 2024年度员工福利费用共享协议
- 关于2022学生顶岗实习心得范文大全
- 传统节日演讲稿范文
- 2024年商场美食广场招商合同
- 2024年度坂田二期公交车消防设备升级及安装合同
- 2024年工程项目合作框架协议
- 2024年度玻璃购销协议
- 语法副词课件教学课件
- 2024年度网络文化传播合同
- 小学道德与法治六年级上册第5课《国家机构有哪些》测试题
- PLC控制的自动花样音乐喷泉系统设计毕业设计论文
- 建筑公司组织架构及岗位职责
- COPD诊疗新进展
- 精品资料(2021-2022年收藏的)病案管理制度全套
- 低压工作票(共3页)
- 2阀门结构和工作原理(上)
- 基础图案设计(课堂PPT)
- 食堂操作工艺流程图
- 幼儿园参观学校活动方案5篇
- 关于旅游景区游客满意度研究的文献综述
评论
0/150
提交评论