版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市双阳区2025届九上数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在中,,,,则的值是()A. B. C. D.2.用直角三角板检查半圆形的工件,下列工件合格的是()A. B.C. D.3.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.4.在半径为1的⊙O中,弦AB的长为,则弦AB所对的圆周角的度数为()A.45° B.60° C.45°或135° D.60°或120°5.某超市花费1140元购进苹果100千克,销售中有的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为元/千克,根据题意所列不等式正确的是()A. B.C. D.6.如图,的半径为,圆心到弦的距离为,则的长为()A. B. C. D.7.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=8.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则的度数为()A.24° B.56° C.66° D.76°9.如图,将△ABC放在每个小正方形的边长都为1的网格中,点A,B,C均在格点上,则tanA的值是()A. B. C.2 D.10.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣(t﹣4)2+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3s B.4s C.5s D.6s二、填空题(每小题3分,共24分)11.若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是_______cm12.在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是_____.13.如图,点把弧分成三等分,是⊙的切线,过点分别作半径的垂线段,已知,,则图中阴影部分的面积是________.14.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线1将这10个正方形分成面积相等的两部分,则该直线的解析式为_____.15.如图,矩形纸片中,,,将纸片沿折叠,使点落在边上的处,折痕分别交边、于点、,且.再将纸片沿折叠,使点落在线段上的处,折痕交边于点.连接,则的长是______.16.二次函数的图象如图所示,对称轴为.若关于的方程(为实数)在范围内有实数解,则的取值范围是__________.17.正的边长为,边长为的正的顶点与点重合,点分别在,上,将沿边顺时针连续翻转(如图所示),直至点第一次回到原来的位置,则点运动路径的长为(结果保留)18.已知函数y=kx2﹣2x+1的图象与x轴只有一个有交点,则k的值为_____.三、解答题(共66分)19.(10分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.20.(6分)某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?21.(6分)己知函数(是常数)(1)当时,该函数图像与直线有几个公共点?请说明理由;(2)若函数图像与轴只有一公共点,求的值.22.(8分)如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于多少;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.23.(8分)如图,在△ABC中,AB=AC=13,BC=10,求tanB的值.24.(8分)在平面直角坐标系中,已知点是直线上一点,过点分别作轴,轴的垂线,垂足分别为点和点,反比例函数的图象经过点.(1)若点是第一象限内的点,且,求的值;(2)当时,直接写出的取值范围.25.(10分)在中,,点在边上运动,连接,以为一边且在的右侧作正方形.(1)如果,如图①,试判断线段与之间的位置关系,并证明你的结论;(2)如果,如图②,(1)中结论是否成立,说明理由.(3)如果,如图③,且正方形的边与线段交于点,设,,,请直接写出线段的长.(用含的式子表示)26.(10分)化简:(1);(2).
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据正弦函数是对边比斜边,可得答案.【详解】解:sinA==.故选A.【点睛】本题考查了锐角正弦函数的定义.2、C【分析】根据直径所对的圆周角是直角逐一判断即可.【详解】解:A、直角未在工件上,故该工件不是半圆,不合格,故A错误;B、直角边未落在工件上,故该工件不是半圆,不合格,故B错误;C、直角及直角边均落在工件上,故该工件是半圆,合格,故C正确;D、直角边未落在工件上,故该工件不是半圆,不合格,故D错误,故答案为:C.【点睛】本题考查了直径所对的圆周角是直角的实际应用,熟知直径所对的圆周角是直角是解题的关键.3、A【解析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.4、C【解析】试题分析:如图所示,连接OA、OB,过O作OF⊥AB,则AF=FB,∠AOF=∠FOB,∵OA=3,AB=,∴AF=AB=,∴sin∠AOF=,∴∠AOF=45°,∴∠AOB=2∠AOF=90°,∴∠ADB=∠AOB=45°,∴∠AEB=180°-45°=135°.故选C.考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.5、A【分析】根据“为避免亏本”可知,总售价≥总成本,列出不等式即可.【详解】解:由题意可知:故选:A.【点睛】此题考查的是一元一次不等式的应用,掌握实际问题中的不等关系是解决此题的关键.6、D【分析】过点O作OC⊥AB于C,连接OA,根据勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.【详解】过点O作OC⊥AB于C,连接OA,则OC=6,OA=10,由勾股定理得:,∵OC⊥AB,OC过圆心O,∴AB=2AC=16,故选D.【点睛】本题主要考查了勾股定理和垂径定理等知识点的应用,正确作出辅助线是关键.7、B【解析】试题分析:根据行程问题的公式路程=速度×时间,可知汽车行驶的时间t关于行驶速度v的函数关系式为t=.考点:函数关系式8、C【分析】先求出∠B的度数,然后再根据圆周角定理的推论解答即可.【详解】∵AB是⊙O的直径∴∵∠BAD=24°∴又∵∴=66°故答案为:C.【点睛】本题考查了圆周角定理的推论:①在同圆或等圆中同弧或等弧所对圆周角相等;②直径所对圆周角等于90°9、D【解析】首先构造以A为锐角的直角三角形,然后利用正切的定义即可求解.【详解】连接BD,则BD=,AD=2,则tanA===.故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,构造直角三角形是本题的关键.10、B【分析】根据顶点式就可以直接求出结论;【详解】解:∵﹣1<0,∴当t=4s时,函数有最大值.即礼炮从升空到引爆需要的时间为4s,故选:B.【点睛】本题主要考查了二次函数的应用,掌握二次函数的应用是解题的关键.二、填空题(每小题3分,共24分)11、12π【分析】根据弧长公式代入可得结论.【详解】解:根据题意,扇形的弧长为,故答案为:12π.【点睛】本题主要考查弧长的计算,解决本题的关键是要熟练掌握弧长公式.12、(2,﹣3).【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案为:(2,﹣3).【点睛】本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.13、【分析】根据题意可以求出各个扇形圆心角的度数,然后利用扇形面积和三角形的面积公式即可求出阴影部分的面积.【详解】解:∵是⊙的切线,,∴,∵点把弧分成三等分,,,,.故答案为:.【点睛】本题主要考查扇形的面积公式和等腰直角三角形的性质,掌握扇形的面积公式是解题的关键.14、y=x-,【解析】根据题意即可画出相应的辅助线,从而可以求得相应的函数解析式.【详解】将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD的面积只要等于5即可,∴设BC=4-x,则,解得,x=,∴点B的坐标为,设过点A和点B的直线的解析式为y=kx+b,,解得,,即过点A和点B的直线的解析式为y=.故答案为:y=.【点睛】本题考查待定系数法求一次函数解析式,正方形的性质.15、【分析】过点E作EG⊥BC于G,根据矩形的性质可得:EG=AB=8cm,∠A=90°,,然后根据折叠的性质可得:cm,,,,根据勾股定理和锐角三角函数即可求出cos∠,再根据同角的余角相等可得,再根据锐角三角函数即可求出,从而求出,最后根据勾股定理即可求出.【详解】过点E作EG⊥BC于G∵矩形纸片中,,,∴EG=AB=8cm,∠A=90°,根据折叠的性质cm,,,∴BF=AB-AF=3cm根据勾股定理可得:cm∴cos∠∵,∴∴解得:cm∴AE=10cm,∴ED=AD-AE=2cm∴∴根据勾股定理可得:故答案为:.【点睛】此题考查的是矩形的性质、折叠的性质、勾股定理和锐角三角函数,掌握矩形的性质、折叠的性质、用勾股定理和锐角三角函数解直角三角形是解决此题的关键.16、【分析】先求出函数解析式,求出函数值取值范围,把t的取值范围转化为函数值的取值范围.【详解】由已知可得,对称轴所以b=-2所以当x=1时,y=-1即顶点坐标是(1,-1)当x=-1时,y=3当x=4时,y=8由得因为当时,所以在范围内有实数解,则的取值范围是故答案为:【点睛】考核知识点:二次函数和一元二次方程.数形结合分析问题,注意函数的最低点和最高点.17、【解析】从图中可以看出翻转的第一次是一个120度的圆心角,半径是1,所以弧长=,第二次是以点P为圆心,所以没有路程,在BC边上,第一次第二次同样没有路程,AC边上也是如此,点P运动路径的长为18、0或1.【分析】当k=0时,函数为一次函数,满足条件;当k≠0时,利用判别式的意义得到当△=0时抛物线与x轴只有一个交点,求出此时k的值即可.【详解】当k=0时,函数解析式为y=﹣2x+1,此一次函数与x轴只有一个交点;当k≠0时,△=(﹣2)2﹣4k=0,解得k=1,此时抛物线与x轴只有一个交点,综上所述,k的值为0或1.故答案为0或1.【点睛】本题考查了抛物线与x轴的交点问题,注意要分情况讨论.三、解答题(共66分)19、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比例函数的解析式,即可求得点A和点D的坐标,用待定系数法求出a和b的值,即能求得一次函数的解析式,
(1)△PAC可以分成△PAD和△PCD,分别求出点A和点C到y轴的距离,根据“△PAC的面积为5”,求出PD的长度,结合点D的坐标,求出点P的坐标即可.【详解】解:(1)根据题意得:
k=-1×1=-4,
即反比例函数的解析式为,解得:
m=4,n=-1,
即点A(-1,4),点C(4,-1),
把点A(-1,4),C(4,-1)代入y=ax+b得:,解得:,即一次函数的解析式为:y=-x+3,
(1)把x=0代入y=-x+3得:y=3,
即点D(0,3),
点A到y轴的距离为1,点C到y轴的距离为4,
S△PAD=×PD×1=PD,
S△PCD=×PD×4=1PD,
S△PAC=S△PAD+S△PCD=PD=5,
PD=1,
∵点D(0,3),
∴点P的坐标为(0,1)或(0,5).【点睛】本题考查了反比例函数与一次函数的交点问题,根据题意和图示找出正确的等量关系式解决本题的关键.20、(1)20%;(2)每千克应涨价5元.【分析】(1)设每次下降的百分率为x,根据相等关系列出方程,可求每次下降的百分率;(2)设涨价y元(0<y≤8),根据总盈余=每千克盈余×数量,可列方程,可求解.【详解】解:(1)设每次下降的百分率为x根据题意得:50(1﹣x)2=32解得:x1=0.2,x2=1.8(不合题意舍去)答:每次下降20%(2)设涨价y元(0<y≤8)6000=(10+y)(500﹣20y)解得:y1=5,y2=10(不合题意舍去)答:每千克应涨价5元.【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.21、(1)函数图像与直线有两个不同的公共点;(2)或.【分析】(1)首先联立二次函数和一次函数得出一元二次方程,然后由根的判别式判定即可;(2)分情况讨论:当和时,与轴有一个公共点求解即可.【详解】(1)当时,∴∴∵∴方程有两个不相等的实数根,函数图像与直线有两个不同的公共点(2)①当时,函数与轴有一个公共点②当时,函数是二次函数由题可得,综上可知:或.【点睛】此题主要考查二次函数与一次函数的综合运用,熟练掌握,即可解题.22、(1);(2).【分析】(1)根据概率公式直接填即可;
(2)依据题意分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【详解】解:(1)有4个开关,只有D开关一个闭合小灯发亮,所以任意闭合其中一个开关,则小灯泡发光的概率是;(2)画树状图如右图:结果任意闭合其中两个开关的情况共有12种,其中能使小灯泡发光的情况有6种,小灯泡发光的概率是.【点睛】本题考查的知识点是概率的求法,解题关键是熟记概率=所求情况数与总情况数之比.23、【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD=DC=BC=5,∴AD,在Rt△ABD中,∴tanB.【点睛】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.24、(1);(2)且.【分析】(1)设点,根据,得到,代入,求得的坐标,即可求得答案;(2)依照(1),求得时的A点的坐标,根据题意,画出函数图象,然后根据函数的图象直接求出k的取值范围即可.【详解】(1)依题意,设点,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版钢筋工程质量检验与维修服务合同
- 委托代理专利合同书6篇
- 合同履行的个原则
- 居民用水电供应与维修2024年度承包合同2篇
- 个人雇佣协议2篇
- 2024年版科学研究与技术开发合同
- 基于云计算的金融风险管理服务2024年度合同
- 财务内部审计报告范文
- 2024年度煤炭矿区生态修复工程承包合同2篇
- 《高血压和饮食》课件
- 《班级安全员培训》课件
- 统编版(2024)七年级上册道德与法治第三单元《珍爱我们的生命》测试卷(含答案)
- 2024年新人教版道德与法治七年级上册全册教案(新版教材)
- 小学六年级数学100道题解分数方程
- 产前检查的操作评分标准
- 食堂油烟系统清洗服务投标方案
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
- 绕线机使用说明书
- 车务段三线建设经验材料
- 架空线路和电缆线路PPT课件
- 精装修工程冬季施工方案
评论
0/150
提交评论