陕西省西安电子科技大附属中学2025届九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
陕西省西安电子科技大附属中学2025届九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
陕西省西安电子科技大附属中学2025届九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
陕西省西安电子科技大附属中学2025届九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
陕西省西安电子科技大附属中学2025届九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安电子科技大附属中学2025届九年级数学第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知如图,中,,,,边的垂直平分线交于点,交于点,则的长是().A. B. C.4 D.62.按如图所示的运算程序,输入的的值为,那么输出的的值为()A.1 B.2 C.3 D.43.函数与函数在同一坐标系中的大致图象是()A. B. C. D.4.如图下列条件中不能判定的是()A. B.C. D.5.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘一,其浓度为贝克/立方米,数据用科学记数法可表示为()A. B. C. D.6.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:27.能判断一个平行四边形是矩形的条件是()A.两条对角线互相平分 B.一组邻边相等C.两条对角线互相垂直 D.两条对角线相等8.下列式子中表示是的反比例函数的是()A. B. C. D.9.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为()A. B. C. D.10.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.12.如图,在平面直角坐标系中,直线l:与坐标轴分别交于A,B两点,点C在x正半轴上,且OC=OB.点P为线段AB(不含端点)上一动点,将线段OP绕点O顺时针旋转90°得线段OQ,连接CQ,则线段CQ的最小值为___________.13.在平面直角坐标系中,点(4,-5)关于原点的对称点的坐标是________.14.如图,AB是⊙O的直径,C、D为⊙O上的点,P为圆外一点,PC、PD均与圆相切,设∠A+∠B=130°,∠CPD=β,则β=_____.15.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为_________________16.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.17.已知反比例函数的图像上有两点M,N,且,,那么与之间的大小关系是_____________.18.在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD'的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:①连接DD',则AP垂直平分DD';②四边形PMBN是菱形;③AD2=DP•PC;④若AD=2DP,则;其中正确的结论是_____(填写所有正确结论的序号)三、解答题(共66分)19.(10分)如图,在中,分别是的中点,,连接交于点.(1)求证:;(2)过点作于点,交于点,若,求的长.20.(6分)在平面直角坐标系中,直线与反比例函数的图象的两个交点分别为点(,)和点.(1)求的值和点的坐标;(2)如果点为轴上的一点,且∠直接写出点A的坐标.21.(6分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.22.(8分)仿照例题完成任务:例:如图1,在网格中,小正方形的边长均为,点,,,都在格点上,与相交于点,求的值.解析:连接,,导出,再根据勾股定理求得三角形各边长,然后利用三角函数解决问题.具体解法如下:连接,,则,,根据勾股定理可得:,,,,是直角三角形,,即.任务:(1)如图2,,,,四点均在边长为的正方形网格的格点上,线段,相交于点,求图中的正切值;(2)如图3,,,均在边长为的正方形网格的格点上,请你直接写出的值.23.(8分)某服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?24.(8分)根据要求完成下列题目:

(1)图中有块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.25.(10分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求:(1)观众区的水平宽度;(2)顶棚的处离地面的高度.(,,结果精确到)26.(10分)直线与双曲线只有一个交点,且与轴、轴分别交于、两点,AD垂直平分,交轴于点.(1)求直线、双曲线的解析式;(2)过点作轴的垂线交双曲线于点,求的面积.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据勾股定理求出BC,根据线段垂直平分线性质和勾股定理可求AE.【详解】因为中,,,,所以BC=因为的垂直平分线交于点,所以AE=EC设AE=x,则BE=8-x,EC=x在Rt△BCE中,由BE2+BC2=EC2可得x2+(8-x)2=62解得x=.即AE=故选:B【点睛】考核知识点:勾股定理,线段垂直平分线.根据勾股定理求出相应线段是关键.2、D【分析】把代入程序中计算,知道满足条件,即可确定输出的结果.【详解】把代入程序,∵是分数,∴不满足输出条件,进行下一轮计算;把代入程序,∵不是分数∴满足输出条件,输出结果y=4,故选D.【点睛】本题考查程序运算,解题的关键是读懂程序的运算规则.3、B【分析】根据函数与函数分别确定图象即可得出答案.【详解】∵,-2<0,∴图象经过二、四象限,∵函数中系数小于0,∴图象在一、三象限.故选:B.【点睛】此题主要考查了从图象上把握有用的条件,准确确定图象位置,正确记忆一次函数与反比例函数的区别是解决问题的关键.4、C【分析】根据相似三角形的判定定理对各个选项逐一分析即可.【详解】A.,可以判定,不符合题意;B.,可以判定,不符合题意;C.不是对应边成比例,且不是相应的夹角,不能判定,符合题意;D.即且,可以判定,不符合题意.故选C.【点睛】本题考查了相似三角形的判定定理,熟练掌握判定定理是解题的关键.5、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000963,这个数据用科学记数法可表示为9.63×.

故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、D【分析】根据题意得出△DEF∽△BCF,进而得出,利用点E是边AD的中点得出答案即可.【详解】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴,∵点E是边AD的中点,∴AE=DE=AD,∴.故选D.7、D【分析】根据矩形的判定进行分析即可;【详解】选项A中,两条对角线互相平分是平行四边形,故选项A错误;选项B中,一组邻边相等的平行四边形是菱形,故选项B错误;选项C中,两条对角线互相垂直的平行四边形是菱形,故选项C错误;选项D中,两条对角线相等的平行四边形是矩形,故选项D正确;故选D.【点睛】本题主要考查了矩形的判定,掌握矩形的判定是解题的关键.8、D【解析】根据反比例函数的定义逐项分析即可.【详解】A.是一次函数,故不符合题意;B.二次函数,故不符合题意;C.不是反比例函数,故不符合题意;D.是反比例函数,符合题意;故选D.【点睛】本题考查了反比例函数的定义,一般地,形如(k为常数,k≠0)的函数叫做反比例函数.9、A【解析】列表得:红黄蓝红(红,红)(黄,红)(蓝,红)黄(红,黄)(黄,黄)(蓝,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)由表格可知,所有等可能的情况数有9种,其中颜色相同的情况有3种,则任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为.故选A.10、B【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.二、填空题(每小题3分,共24分)11、1【分析】极差是指一组数据中最大数据与最小数据的差.极差=最大值−最小值,根据极差的定义即可解答.【详解】解:由题意可知,极差为28−12=1,

故答案为:1.【点睛】本题考查了极差的定义,解题时牢记定义是关键.12、【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,∴△≌△QOC(SAS),∴∴当最小时,QC最小,过点作⊥AB,∵直线l:与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵,∴,.∵,∴,∴,∴线段CQ的最小值为.故答案为:.【点睛】本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.13、(-4,5)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点(4,-5)关于原点的对称点的坐标是(-4,5),故答案为:(-4,5).【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.14、100°【分析】连结OC,OD,则∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根据OB=OC,OD=OA,可得∠BOC=180°−2∠B,∠AOD=180°−2∠A,则可得出与β的关系式.进而可求出β的度数.【详解】连结OC,OD,∵PC、PD均与圆相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴∠CPD=100°,故答案为:100°.【点睛】本题利用了切线的性质,圆周角定理,四边形的内角和为360度求解,解题的关键是熟练掌握切线的性质.15、秒或1秒【分析】此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可【详解】解:(1)当△APQ∽△ABC时,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.,则AP=2t,CQ=3t,AQ=16-3t.于是=,解得,t=(2)当△APQ∽△ACB时,,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.则AP=2t,CQ=3t,AQ=16-3t.于是,解得t=1.故答案为t=或t=1.【点睛】此题考查了相似三角形的判定和性质,根据题意将对应边转换,得到两组相似三角形是解题的关键.16、【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.17、【分析】根据反比例函数特征即可解题。【详解】∵∴∵,∴,∴故答案为【点睛】本题考查反比例函数上点的坐标特征,注意反比例函数是分别在各自象限内存在单调性。18、①②③【分析】根据折叠的性质得出AP垂直平分DD',判断出①正确.过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC判断出③正确;DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;判断出②正确;由于,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得,判断出④错误.【详解】解:∵将△ADP沿AP翻折得到△AD'P,∴AP垂直平分DD',故①正确;解法一:过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;解法二:易证:△ADP∽△PCB,∴,由于AD=CB,∴AD2=DP•PC;故③正确;∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;故②正确;由于,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴,∴又易证:△PCE∽△MAE,AM=AB=∴,∴,∴EF=AF﹣AE=AC﹣=AC∴,故④错误,即:正确的有①②③,故答案为:①②③.【点睛】本题是一道关于矩形折叠的综合题目,考查的知识点有折叠的性质,矩形的性质,相似三角形的性质,菱形的判定等,此题充分考查了学生对所学知识点的掌握情况以及综合利用能力,是一道很好的题目.三、解答题(共66分)19、(1)见解析;(2)AN的长为2.【分析】(1)利用平行四边形的性质及中点的性质即可证得结论;(2)先判定四边形CDMN是平行四边形,再判断其为菱形,利用菱形的性质,判断△MNC为等边三角形,从而求得∠1=∠2=∠MND=30°,在中,利用特殊角,求出EN,进而求出线段AN的长.【详解】(1)在平行四边形ABCD中,∠B=∠ADC,AB=CD,∵M,N分别是AD,BC的中点,∴BN=BC=AD=DM,∴△ABN≌△CDM;(2)∵在平行四边形ABCD中,M,N分别是AD,BC的中点,∴,,∴四边形CDMN为平行四边形,∵在中,M为AD中点,∴MN=MD,∴平行四边形CDMN为菱形;∴∠MND=∠DNC=∠1=∠2,∵CE⊥MN,∠MND+∠DNC+∠2=90°,∴∠MND=∠DNC=∠2=30°,在中,∵PE=1,∠ENP=30°,∴EN=,在中,∵EN=,∠2=30°,NC=2EN=2,∵∠MNC=∠MND+∠DNC=60°,∴△MNC为等边三角形,又由(1)可得,MC=AN,∴AN=MC=NC=2,∴AN的长为2.【点睛】本题是四边形的综合题,考查了平行四边形的性质和判定、菱形的判定与性质、直角三角形的斜边中线与斜边的关系、等边三角形的性质和判定以及相似三角形的性质和判定,利用直角三角形中30°的角所对的直角边等于斜边的一半是求解的关键.20、(1)k=1,Q(-1,-1).(2)【分析】(1)将点P代入直线中即可求出m的值,再将P点代入反比例函数中即可得出k的值,通过直线与反比例函数联立即可求出Q的坐标;(2)先求出PQ之间的距离,再利用直角三角形斜边的中线等于斜边的一半即可求出点A的坐标.【详解】解:(1)∵点(,)在直线上,∴.∵点(,)在上,∴.∴∵点为直线与的交点,∴解得∴点坐标为(,).(2)由勾股定理得∵∠∴∴(,0),(,0).【点睛】本题主要考查反比例函数与一次函数的综合,掌握待定系数法,勾股定理是解题的关键.21、(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得.∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵BE∥轴,∴点E的坐标是(0,-4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形22、(1)2;(2)1.【分析】(1)如图所示,连接,,与交于点,则,可得出,再证明是直角三角形即可得出;(2)连接BC,根据勾股定理可得AB,AC,BC的值,可判断为等腰直角三角形,即可得出.【详解】解:(1)如图所示,连接,,与交于点,则,,根据勾股定理可得:,,,,是直角三角形,,,.(2)连接BC,根据勾股定理可得:AC==,BC==,AB==.,.为等腰直角三角形.【点睛】本题考查了解直角三角形,构造直角三角形是解题的关键.23、(1)A种款式的服装采购了65件,B种款式的服装采购了1件;(2)A种款式的服装最多能采购2件.【分析】(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,根据总价=单价×数量结合花费了6600元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设A种款式的服装采购了m件,则B种款式的服装

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论