人教版八年级数学下册常考点微专题提分精练专题15折叠问题中的勾股定理(原卷版+解析)_第1页
人教版八年级数学下册常考点微专题提分精练专题15折叠问题中的勾股定理(原卷版+解析)_第2页
人教版八年级数学下册常考点微专题提分精练专题15折叠问题中的勾股定理(原卷版+解析)_第3页
人教版八年级数学下册常考点微专题提分精练专题15折叠问题中的勾股定理(原卷版+解析)_第4页
人教版八年级数学下册常考点微专题提分精练专题15折叠问题中的勾股定理(原卷版+解析)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题15折叠问题中的勾股定理【例题讲解】(1)如图①,Rt△ABC的斜边AC比直角边AB长2cm,另一直角边BC长为6cm,求AC的长.(2)拓展:如图②,在图①的△ABC的边AB上取一点D,连接CD,将△ABC沿CD翻折,使点B的对称点E落在边AC上.①AE的长.②求DE的长.解:(1)设AB=xcm,则AC=(x+2)cm,∵AC2=AB2+BC2,∴(x+2)2=x2+62,解得x=8,∴AB=8cm,∴AC=8+2=10(cm);(2)①由折叠的性质可得∠DEC=∠DBC=90°,DE=DB,EC=BC=6cm,∴AE=AC−EC=4cm;②设DE=DB=ycm,则AD=AB−BD=(8−y)cm,在Rt△ADE中,AD2=AE2+DE2,∴(8−y)2=42+y2,解得:y=3,∴DE=3cm.【综合解答】1.如图,在中,,,,在边上有一点,将沿直线折叠,点恰好在延长线上的点处,求的长.2.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为________,点E的坐标为________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.3.如图,在Rt△ABC中,∠C=90°,AC=BC=a,AD是BC边上的中线,将A点翻折与点D重合,得到折痕EF.(1)若a=4,求CE的长;(2)求的值.4.已知,如图长方形中,,,将此长方形折叠,使点B与点D重合,折痕为,求的长.5.在矩形中,,,点D为边上一点,将沿直线折叠,使点B恰好落在边上的点E处,分别以,所在的直线为x轴,y轴建立平面直角坐标系,求点D的坐标.6.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.7.(1)如图①,Rt△ABC的斜边AC比直角边AB长2cm,另一直角边BC长为6cm,求AC的长.(2)拓展:如图②,在图①的△ABC的边AB上取一点D,连接CD,将△ABC沿CD翻折,使点B的对称点E落在边AC上.①AE的长.②求DE的长.8.如图1,在△ABC,AB=AC=10,BC=12.(1)求BC边上的高线长.(2)点E是BC边上的动点,点D在边AB上,且AD=4,连结DE.①如图2,当点E是BC中点时,求△BDE的面积.②如图3,沿DE将△BDE折叠得到△FDE,当DF与△ABC其中一边垂直时,求BE的长.9.如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数;(2)当折痕MN与对角线AC重合时,试求△MNK的面积.(3)△MNK的面积能否小于0.5?若能,求出此时∠1的度数;若不能,试说明理由;10.在平面直角坐标系中,点的坐标为,以A为顶点的的两边始终与轴交于、两点(在左面),且.(1)如图,连接,当时,试说明:.(2)过点作轴,垂足为,当时,将沿所在直线翻折,翻折后边交轴于点,求点的坐标.11.综合与探究在学习了轴对称变换后,我们经常会遇到三角形中的“折叠”问题,在解答这种问题时,通常会考虑到折叠前与折叠后的图形全等,并利用全等图形的性质,即对应角相等,对应边相等来研究解决数学中的“折叠”问题,每个小组剪了一些如图1所示的纸片(,,)并进行探究:(1)如图2,“奋斗”小组将纸片沿DE折叠,使点C落在外部的处①若,,则的度数为.②,,之间的数量关系为.(2)如图3,“勤奋”小组将沿DE折叠,使点C与点A重合,求BD的长;(3)如图4,“雄鹰”小组将沿AD折叠,使点B落在点E处,连接CE,当为直角三角形时,求BD的长.12.问题提出(1)如图①,在Rt△ABC中,∠ABC=90°,AB=12,BC=16,则AC=;问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=10,点D是AC边上一点,且满足DA=DB,则CD=;问题解决(3)如图③,在Rt△ABC中,过点B作射线BP,将∠C折叠,折痕为EF,其中E为BC中点,点F在AC边上,点C的对应点落在BP上的点D处,连接ED、FD,若BC=8,求△BCD面积的最大值,及面积最大时∠BCD的度数.专题15折叠问题中的勾股定理【例题讲解】(1)如图①,Rt△ABC的斜边AC比直角边AB长2cm,另一直角边BC长为6cm,求AC的长.(2)拓展:如图②,在图①的△ABC的边AB上取一点D,连接CD,将△ABC沿CD翻折,使点B的对称点E落在边AC上.①AE的长.②求DE的长.解:(1)设AB=xcm,则AC=(x+2)cm,∵AC2=AB2+BC2,∴(x+2)2=x2+62,解得x=8,∴AB=8cm,∴AC=8+2=10(cm);(2)①由折叠的性质可得∠DEC=∠DBC=90°,DE=DB,EC=BC=6cm,∴AE=AC−EC=4cm;②设DE=DB=ycm,则AD=AB−BD=(8−y)cm,在Rt△ADE中,AD2=AE2+DE2,∴(8−y)2=42+y2,解得:y=3,∴DE=3cm.【综合解答】1.如图,在中,,,,在边上有一点,将沿直线折叠,点恰好在延长线上的点处,求的长.答案:CM=【解析】分析:在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.【详解】解:连接DM∵折叠,∴BM=DM,∵BC=3,AC=4,∴AB=AD==5,∴CD=AD-AC=1,在Rt△CDM中,DM2=CD2+CM2∴(3-CM)2=1+CM2∴CM=【点睛】本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.2.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为________,点E的坐标为________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.答案:(1)(3,4);(0,1);(2)点E能恰好落在x轴上,m的值是3,理由见详解.【解析】分析:(1)根据点A、点D、点C的坐标和矩形的性质可以得到点B和点E的坐标;(2)由折叠的性质求得线段DE和AE的长,然后利用勾股定理得到有关m的方程,求得m的值即可.【详解】解:(1)点B的坐标是(3,4)∵AB=BD=3,∴△ABD是等腰直角三角形,∴∠BAD=45,则∠DAE=∠BAD=45,则E在y轴上.AE=AB=BD=3,∴四边形ABDE是正方形,OE=1,则点E的坐标为(0,1);故答案为(3,4),(0,1);(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCO=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.故答案为(1)(3,4);(0,1);(2)点E能恰好落在x轴上,m的值是3.【点睛】本题考查翻折变换(折叠问题),勾股定理.3.如图,在Rt△ABC中,∠C=90°,AC=BC=a,AD是BC边上的中线,将A点翻折与点D重合,得到折痕EF.(1)若a=4,求CE的长;(2)求的值.答案:(1)CE=1.5;(2)【解析】分析:(1)设CE=x,根据勾股定理列出方程,解方程求出x,计算即可;(2)设CE=y,根据勾股定理列出方程,解方程求出x、y的关系,计算即可.【详解】解:(1)设,,AD是BC边上的中线,∴CD=2,由翻转变换的性质可知,,由勾股定理得,,解得,,则CE=1.5.(2)设,∵,AD是BC边上的中线,,由翻转变换的性质可知,,由勾股定理得,,解得,,则,∴【点睛】本题考查了利用勾股定理解直角三角形的过程,解题的关键是:在直角三角形中利用勾股定理建立等式。进行求解.4.已知,如图长方形中,,,将此长方形折叠,使点B与点D重合,折痕为,求的长.答案:【解析】分析:过点E做于点H,由四边形是长方形和折叠知,再用平行线的性质和勾股定理即可求解.【详解】解:过点E做于点H,过点E作∵四边形是长方形四边形是矩形设,由折叠知,,在中,解得,,,又,,,又,,在中,【点睛】此题考查了折叠的性质、长方形的性质以及勾股定理、此题难度不大,掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.5.在矩形中,,,点D为边上一点,将沿直线折叠,使点B恰好落在边上的点E处,分别以,所在的直线为x轴,y轴建立平面直角坐标系,求点D的坐标.答案:(-3,-10)【解析】分析:由折叠的性质可求得CE,在Rt△COE中,由勾股定理可求得OE,设AD=m,在Rt△ADE中,由勾股定理可求得m的值,可求得D点坐标.【详解】∵矩形中,,,∴,∵将沿直线折叠,∴,在Rt△COE中∴设AD=m,则DE=BD=8-m,在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即,解得m=3,∴D(-3,-10).【点睛】本题考查矩形与折叠问题,设未知数利用勾股定理列方程是解题的关键,还考查了直角坐标系中各象限中点的特点.6.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.答案:(1)见解析;(2)45°;(3)BG=2.【解析】分析:(1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;(2)由(1)可得∠FAG=∠BAF,由折叠的性质可得∠EAF=∠DAF,继而可得∠EAG=∠BAD=45°;(3)首先设BG=x,则可得CG=6﹣x,GE=EF+FG=x+3,然后利用勾股定理GE2=CG2+CE2,得方程:(x+3)2=(6﹣x)2+32,解此方程即可求得答案.【详解】(1)证明;在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴∠BAG=∠FAG,∴∠FAG=∠BAF,由折叠的性质可得:∠EAF=∠DAE,∴∠EAF=∠DAF,∴∠EAG=∠EAF+∠FAG=(∠DAF+∠BAF)=∠DAB=×90°=45°;(3)∵E是CD的中点,∴DE=CE=CD=×6=3,设BG=x,则CG=6﹣x,GE=EF+FG=x+3,∵GE2=CG2+CE2∴(x+3)2=(6﹣x)2+32,解得:x=2,∴BG=2.【点睛】此题属于四边形的综合题,考查了正方形的性质、折叠的性质、全等三角形的判定与性质以及勾股定理等知识,注意折叠中的对应关系、注意掌握方程思想的应用是解此题的关键.8.如图1,在△ABC,AB=AC=10,BC=12.(1)求BC边上的高线长.(2)点E是BC边上的动点,点D在边AB上,且AD=4,连结DE.①如图2,当点E是BC中点时,求△BDE的面积.②如图3,沿DE将△BDE折叠得到△FDE,当DF与△ABC其中一边垂直时,求BE的长.答案:(1)8(2)①;②或或【解析】分析:(1)如图,过作于再求解再利用勾股定理求解高线长即可;(2)①如图,连接利用等腰三角形的三线合一证明求解可得证明从而可得答案;②分三种情况讨论:当时,再利用等面积法与勾股定理结合可得答案;当于时,利用角平分线的性质及面积比可得答案;当时,如图,则证明再利用勾股定理可得答案.(1)解:如图,过作于AB=AC=10,BC=12,所以BC边上的高线长为(2)解:①如图,连接为的中点,由(1)得:则②当时,由对折可得:过作于连接过作于过作于由①得:则设则由而解得:当于时,则过作于由对折可得当时,如图,则由对折可得而则而结合对折可得:过作于同理可得:综上:当DF与△ABC其中一边垂直时,BE的长为或或.【点睛】本题考查的是等腰三角形的性质,勾股定理的应用,轴对称的性质,清晰的分类讨论,等面积法是应用等都是解本题的关键.9.如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数;(2)当折痕MN与对角线AC重合时,试求△MNK的面积.(3)△MNK的面积能否小于0.5?若能,求出此时∠1的度数;若不能,试说明理由;答案:40°;1.3;不能.【解析】【详解】试题分析:(1)根据矩形得出AM∥DN,则∠KNM=∠1,根据∠KMN=∠1得出∠KNM=∠KMN,根据∠1=70°得到∠KNM=∠KMN=70°,从而求出∠MKN的度数;(2)根据题意画出图形,设MK=AK=CK=x,则DK=5-x,根据勾股定理求出x的值,从而得出△MNK的大小;(3)过M点作AE⊥DN,垂足为点E,则ME=AD=1,由(1)得∠KNM=∠KMN,根据MK=NK,MK≥ME,ME=AD=1,得出MK≥1,从而得到△MNK的面积最小值.试题解析:(1)∵四边形ABCD是矩形,∴AM∥DN,∴∠KNM=∠1,∵∠KMN=∠1,∴∠KNM=∠KMN,∵∠1=70°,∴∠KNM=∠KMN=70°,∴∠MKN=40°;折痕即为AC,设MK=AK=CK=x,则DK=5-x,根据勾股定理得:解得:x=2.6MK=AK=CK=2.6,S△MNK=S△ACK==1.3,因此,△MNK的面积的为1.3(3)不能,理由如下:过M点作AE⊥DN,垂足为点E,则ME=AD=1,由(1)知,∠KNM=∠KMN,∴MK=NK,又∵MK≥ME,ME=AD=1,∴MK≥1,又∵S△MNK=NK·ME≥,即△MNK面积的最小值为,不可能小于;考点:折叠图形的性质.10.在平面直角坐标系中,点的坐标为,以A为顶点的的两边始终与轴交于、两点(在左面),且.(1)如图,连接,当时,试说明:.(2)过点作轴,垂足为,当时,将沿所在直线翻折,翻折后边交轴于点,求点的坐标.答案:(1)见解析;(2)M点坐标为(0,3)或M点坐标为(0,—6).【解析】【详解】试题分析:(1)根据题目中角的度数,求出∠BAO=∠ABC=67.5°,利用等腰三角形的性质即可得出结论;(2)根据题意,可知要分两种情况,即当点C在点D右侧时或当点C在点D左侧时,利用勾股定理即可得出M点坐标.试题解析:(1)∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°.过点A作AE⊥OB于E,则△AEO是等腰直角三角形,∠EAO=45°.∵AB=AC,AE⊥OB,∴∠BAE=∠BAC=22.5°.∴∠BAO=67.5°=∠ABC∴OA=OB,(2)设OM=x.当点C在点D右侧时,连接CM,过点A作AF⊥y轴于点F,由∠BAM=∠DAF=90°可知:∠BAD=∠MAF;∵AD=AF=6,∠BDA=∠MFA=90°,∴△BAD≌△MAF.∴BD=FM=6—x.∵AC=AC,∠BAC=∠MAC,∴△BAC≌△MAC.

∴BC=CM=8—x.在Rt△COM中,由勾股定理得:OC2+OM2=CM2,即,解得:x=3,∴M点坐标为(0,3).

当点C在点D左侧时,连接CM,过点A作AF⊥y轴于点F,同理,△BAD≌△MAF,∴BD=FM=6+x.同理,△BAC≌△MAC,∴BC=CM=4+x.

在Rt△COM中,由勾股定理得:OC2+OM2=CM2,即,解得:x=6,∴M点坐标为(0,—6)考点:等腰三角形的性质;翻折的性质.11.综合与探究在学习了轴对称变换后,我们经常会遇到三角形中的“折叠”问题,在解答这种问题时,通常会考虑到折叠前与折叠后的图形全等,并利用全等图形的性质,即对应角相等,对应边相等来研究解决数学中的“折叠”问题,每个小组剪了一些如图1所示的纸片(,,)并进行探究:(1)如图2,“奋斗”小组将纸片沿DE折叠,使点C落在外部的处①若,,则的度数为.②,,之间的数量关系为.(2)如图3,“勤奋”小组将沿DE折叠,使点C与点A重合,求BD的长;(3)如图4,“雄鹰”小组将沿AD折叠,使点B落在点E处,连接CE,当为直角三角形时,求BD的长.答案:(1)①114°;②∠2=∠1+2∠C;(2);(3)3或6【解析】分析:(1)①根据三角形外角的性质求得∠DFC的度数,然后再次利用三角形外角的性质求得∠2的度数;②利用三角形外角的性质推理计算;(2)设BD=x,根据折叠的性质结合勾股定理列方程求解;(3)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,根据勾股定理求得AC=10,根据翻折的性质得AE=AB=6,DE=BD,∠AED=∠B=90°,然后分∠DEC=90°和∠EDC=90°两种情况,结合勾股定理求解.【详解】解:(1)①由折叠性质可得∠C=∠C′=37°∴∠DFC=∠1+∠C′=77°∴∠2=∠DFC+∠C=77+37=114°故答案为:114°②由折叠性质可得∠C=∠C′∴∠DFC=∠1+∠C′∴∠2=∠DFC+∠C=∠1+∠C′+∠C=∠1+2∠C故答案为:∠2=∠1+2∠C(2)∵,,设BD=x,则CD=AD=8-x∴在Rt△ABD中,,解得:∴BD的长为(3)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∴AC==10,∵△AED是△ABD以AD为折痕翻折得到的,∴AE=AB=6,DE=BD,∠AED=∠B=90°.当△DEC为直角三角形,①如图,当∠DEC=90°时,∵∠AED+∠DEC=180°,∴点E在线段AC上,设BD=DE=x,则CD=8-x,∴CE=AC-AE=4,∴DE2+CE2=CD2,即x2+42=(8-x)2,解得:x=3,即BD=3;②如图,当∠EDC=90°,

∴∠BDE=90°,∵∠BDA=∠ADE,∴∠BDA=∠ADE=45°,∴∠BAD=45°,∴AB=BD=6.综上所述:当△D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论