版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各式运算正确的是()A. B. C. D.2.下列式子中,为最简二次根式的是()A. B. C. D.3.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,同一时刻测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米.则树高为()A.3.0m B.4.0m C.5.0m D.6.0m4.如图,正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D,F在x轴上,点C在DE边上,反比例函数y=(k≠0)的图象经过点B、C和边EF的中点M.若S正方形ABCD=2,则正方形DEFG的面积为()A. B. C.4 D.5.(2011?德州)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1 B.a4>a3>a2C.a1>a2>a3 D.a2>a3>a46.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C. D.7.下列关于x的方程是一元二次方程的有()①ax2+bx+c=0②x2=0③④A.②和③ B.①和② C.③和④ D.①和④8.要使式子有意义,则x的值可以是()A.2 B.0 C.1 D.99.在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若小明首先抽签,则小明抽到1号跑道的概率是()A. B. C. D.10.在ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与⊙A的位置关系是()A.在⊙A外 B.在⊙A上 C.在⊙A内 D.不能确定11.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20° B.25° C.30° D.40°12.如图,将沿着弦翻折,劣弧恰好经过圆心.如果半径为4,那么的弦长度为A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知梯形ABCO的底边AO在轴上,,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为__________.14.如图,是⊙的一条弦,⊥于点,交⊙于点,连接.如果,,那么⊙的半径为_________.15.如图,电灯在横杆的正上方,在灯光下的影子为,,米,米,点到的距离是3米,则到的距离是__________米.16.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离出发点的水平距离为__m.17.如图所示的的方格纸中,如果想作格点与相似(相似比不能为1),则点坐标为___________.18.抛物线的顶点坐标是__________________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,D是BC边上的一点,OC:CD=5:3,DB=1.反比例函数y=(k≠0)在第一象限内的图象经过点D,交AB于点E,AE:BE=1:2.(1)求这个反比例函数的表达式;(2)动点P在矩形OABC内,且满足S△PAO=S四边形OABC.①若点P在这个反比例函数的图象上,求点P的坐标;②若点Q是平面内一点使得以A、B、P、Q为顶点的四边形是菱形求点Q的坐标.20.(8分)如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:;(2)若,求.(3)如图2,在(2)的条件下,连接CF,求的值.21.(8分)如图,在直角坐标系中,点A的坐标为(-2,0),OB=OA,且∠AOB=120°.(1)求经过A、O、B三点的抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点C,使△OBC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)若点M为抛物线上一点,点N为对称轴上一点,是否存在点M、N使得A、O、M、N构成的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.22.(10分)某小区为改善生态环境,实行生活垃圾的分类处理,将生活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为,并且设置了相应的垃圾箱“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为.(1)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共吨生活垃圾,数据统计如下图(单位:吨):请根据以上信息,估计“厨房垃圾”投放正确的概率;(2)若将三类垃圾随机投入三类垃圾箱,请用画树状图或列表格的方法求出垃圾投放正确的概率.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+PB的最小值为_____.24.(10分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次.25.(12分)如图,已知一次函数与反比例函数的图像相交于点,与轴相交于点.(1)求的值和的值以及点的坐标;(2)观察反比例函数的图像,当时,请直接写出自变量的取值范围;(3)以为边作菱形,使点在轴正半轴上,点在第一象限,求点的坐标;(4)在y轴上是否存在点,使的值最小?若存在,请求出点的坐标;若不存在,请说明理由.26.我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量(千克)与销售单价(元)符合一次函数关系,如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?
参考答案一、选择题(每题4分,共48分)1、D【分析】逐一对选项进行分析即可.【详解】A.不是同类项,不能合并,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,故该选项正确;故选:D.【点睛】本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.2、B【分析】利用最简二次根式定义判断即可.【详解】A、原式,不符合题意;B、是最简二次根式,符合题意;C、原式,不符合题意;D、原式,不符合题意;故选B.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.3、B【分析】根据同一时刻物高与影长成正比例列式计算即可.【详解】根据同一时刻物高与影长成正比例可得,如图,∴=.∴AD=1.∴AB=AD+DB=1+1=2.故选:B.【点睛】本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解,加上DB的长即可.解此题的关键是找到各部分以及与其对应的影长.4、B【分析】作BH⊥y轴于H,连接EG交x轴于N,进一步证明△AOD和△ABH都是等腰直角三角形,然后再求出反比例函数解析式为y=,从而进一步求解即可.【详解】作BH⊥y轴于H,连接EG交x轴于N,如图,∵正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,∴∠EDF=45°,∴∠ADO=45°,∴∠DAO=∠BAH=45°,∴△AOD和△ABH都是等腰直角三角形,∵S正方形ABCD=2,∴AB=AD=,∴OD=OA=AH=BH=×=1,∴B点坐标为(1,2),把B(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=,设DN=a,则EN=NF=a,∴E(a+1,a),F(2a+1,0),∵M点为EF的中点,∴M点的坐标为(,),∵点M在反比例函数y=的图象上,∴×=2,整理得3a2+2a﹣8=0,解得a1=,a2=﹣2(舍去),∴正方形DEFG的面积=2∙EN∙DF=2∙=.故选:B.【点睛】本题主要考查了正方形的性质与反比例函数的综合运用,熟练掌握相关概念是解题关键.5、B【解析】试题解析:设等边三角形的边长是a,则等边三角形的周率a1==3设正方形的边长是x,由勾股定理得:对角线是x,则正方形的周率是a1==1≈1.818,设正六边形的边长是b,过F作FQ∥AB交BE于Q,得到平行四边形ABQF和等边三角形EFQ,直径是b+b=1b,∴正六边形的周率是a3==3,圆的周率是a4==π,∴a4>a3>a1.故选B.考点:1.正多边形和圆;1.等边三角形的判定与性质;3.多边形内角与外角;4.平行四边形的判定与性质.6、C【分析】证明△ABC是等腰直角三角形即可解决问题.【详解】解:∵AB=AC,
∴∠B=∠C,
∵∠A=2∠B,
∴∠B=∠C=45°,∠A=90°,
∴在Rt△ABC中,BC==AC,
∴sin∠B•sadA=,故选:C.【点睛】本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7、A【解析】根据一元二次方程的定义进行解答即可.【详解】①ax2+bx+c=0,当a=0时,该方程不是一元二次方程;②x2=0符合一元二次方程的定义;③符合一元二次方程的定义;④是分式方程.综上所述,其中一元二次方程的是②和③.故选A.【点睛】本题考查了一元二次方程的定义,利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.8、D【解析】式子为二次根式,根据二次根式的性质,被开方数大于等于0,可得x-50,解不等式就可得到答案.【详解】∵式子有意义,∴x-50,∴x5,观察个选项,可以发现x的值可以是9.故选D.【点睛】本题考查二次根式有意义的条件.9、B【详解】解:小明选择跑道有4种结果,抽到跑道1只有一种结果,小明抽到1号跑道的概率是故选B.【点睛】本题考查概率.10、B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.11、B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=∠DOC=25°.
故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.12、D【分析】如果过O作OC⊥AB于D,交折叠前的AB弧于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而求出AB的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB弧于C,
根据折叠后劣弧恰好经过圆心O,那么可得出的是OD=CD=2,
直角三角形OAD中,OA=4,OD=2,
∴AD=∴AB=2AD=,故选:D.【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.二、填空题(每题4分,共24分)13、【分析】设C(x,y),BC=a.过D点作DE⊥OA于E点.根据DE∥AB得比例线段表示点D坐标;根据△OBC的面积等于3得关系式,列方程组求解.【详解】设C(x,y),BC=a.则AB=y,OA=x+a.过D点作DE⊥OA于E点.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比为OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D点在反比例函数的图象上,且D((x+a),y),∴y•(x+a)=k,即xy+ya=9k,∵C点在反比例函数的图象上,则xy=k,∴ya=8k.∵△OBC的面积等于3,∴ya=3,即ya=1.∴8k=1,k=.故答案为:.14、5【分析】由垂径定理可知,在中利用勾股定理即可求出半径.【详解】设⊙的半径为r∵是⊙的一条弦,⊥,∴在中∵∴∴故答案为5【点睛】本题主要考查勾股定理及垂径定理,掌握勾股定理及垂径定理的内容是解题的关键.15、【分析】利用相似三角形对应高的比等于相似比,列出方程即可解答.【详解】∴△PAB∽△PCD,∴AB:CD=P到AB的距离:点P到CD的距离,∴2:5=P到AB的距离:3,∴P到AB的距离为m,故答案为.【点睛】本题主要考查了相似三角形的应用,掌握相似三角形的应用是解题的关键.16、.【分析】可利用勾股定理及所给的比值得到所求的线段长.【详解】如图,∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4米.故答案为4.【点睛】本题主要考查了解直角三角形的应用-坡度坡角问题,能从实际问题中整理出直角三角形是解答本题的关键.17、(5,2)或(4,4).【分析】要求△ABC与△OAB相似,因为相似比不为1,由三边对应相等的两三角形全等,知△OAB的边AB不能与△ABC的边AB对应,则AB与AC对应或者AB与BC对应并且此时AC或者BC是斜边,分两种情况分析即可.【详解】解:根据题意得:OA=1,OB=2,AB=,∴当AB与AC对应时,有或者,∴AC=或AC=5,∵C在格点上,∴AC=(不合题意),则AC=5,如图:∴C点坐标为(4,4)同理当AB与BC对应时,可求得BC=或者BC=5,也是只有后者符合题意,如图:此时C点坐标为(5,2)∴C点坐标为(5,2)或(4,4).故答案为:(5,2)或(4,4).【点睛】本题结合坐标系,重点考查了相似三角形的判定的理解及运用.18、(2,0).【分析】直接利用顶点式可知顶点坐标.【详解】顶点坐标是(2,0),故答案为:(2,0).【点睛】主要考查了求抛物线顶点坐标的方法.三、解答题(共78分)19、(1)y=;(2)①(,4);②(1,3)或(3﹣2,﹣1).【分析】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n),利用反比例函数图像上的点的坐标特征可求出m的值,之后进一步求出n的值,然后进一步求解即可;(2)根据三角形的面积公式与矩形的面积公式结合S△PAO=S四边形OABC即可进一步求出P的纵坐标.①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;②由点A,B的坐标及点P的总坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,4),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用两点间的距离公式可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用两点间的距离公式可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.【详解】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n).∵点D,E在反比例函数y=(k≠0)的图象上,∴k=mn=(m﹣1)n,∴m=3.∵OC:CD=5:3,∴n:(m﹣1)=5:3,∴n=5,∴k=mn=×3×5=15,∴反比例函数的表达式为y=.(2)∵S△PAO=S四边形OABC,∴OA∙yP=OA∙OC,∴yP=OC=4.当y=4时,=4,解得:x=,∴若点P在这个反比例函数的图象上,点P的坐标为(,4).②由(1)可知:点A的坐标为(3,0),点B的坐标为(3,5),∵yP=4,yA+yB=5,∴,∴AP≠BP,∴AB不能为对角线.设点P的坐标为(t,4).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(3﹣t)2+(4﹣0)2=52,解得:t1=1,t2=12(舍去),∴点P1的坐标为(1,4).又∵P1Q1=AB=5,∴点Q1的坐标为(1,3);(ii)当BP=AB时,(3﹣t)2+(5﹣4)2=52,解得:t3=3﹣2,t4=3+2(舍去),∴点P2的坐标为(3﹣2,4).又∵P2Q2=AB=5,∴点Q2的坐标为(3﹣2,﹣1).综上所述:点Q的坐标为(1,3)或(3﹣2,﹣1).【点睛】本题主要考查了反比例函数的综合运用,熟练掌握相关概念是解题关键.20、(1)见解析;(2);(3)【分析】(1)由等角对等边可得,再由对顶角相等推出,然后利用等角的余角相等即可得证;(2)在中,利用勾股定理可求出BD=10,然后由等角对等边得到,进而求出BP=2,再利用推出,由垂直平分线推出,即可得到的值;(3)连接CG,先由勾股定理求出,由(2)的条件可推出BE=DG,再证明△ABE≌△CDG,从而求出,并推出,最后在中,即可求出的值.【详解】(1)证明:,∵MN⊥AP∴∠GFE=90°∴∠BGN+∠GEF=90°又(2)在矩形ABCD中,∴在中,又∵在矩形ABCD中,∴∵MN垂直平分AP(3)如图,连接CG,在中,在中,又∵在矩形ABCD中,在△ABE和△CDG中,∵AB=DC,∠ABE=∠CDG,BE=DG∴在中,【点睛】本题考查了矩形的性质和等腰三角形的性质,全等三角形,相似三角形的判定和性质,以及三角函数,熟练掌握矩形的性质推出相似三角形与全等三角形是解题的关键.21、(1);(2)(-1,);(3)M1(-1,-),M2(-3,),M3(1,).【解析】(1)先确定出点B坐标,再用待定系数法即可;(2)先判断出使△BOC的周长最小的点C的位置,再求解即可;(3)分OA为对角线、为边这两种情况进行讨论计算即可得出答案.【详解】(1)如图所示,过点B作BD⊥x轴于点D,∵点A的坐标为(-2,0),OB=OA,∴OB=OA=2,∵∠AOB=120°,∴∠BOD=60°,在Rt△OBD中,∠ODB=90°,∴∠OBD=30°,∴OD=1,DB=,∴点B的坐标是(1,),设所求抛物线的解析式为y=ax2+bx+c,由已知可得:,解得:∴所求抛物线解析式为;(2)存在.如图所示,∵△BOC的周长=OB+BC+CO,又∵OB=2,∴要使△BOC的周长最小,必须BC+CO最小,∵点O和点A关于对称轴对称,∴连接AB与对称轴的交点即为点C,由对称可知,OC=OA,此时△BOC的周长=OB+BC+CO=OB+BC+AC;点C为直线AB与抛物线对称轴的交点,设直线AB的解析式为y=kx+b,将点A(−2,0),B(1,)分别代入,得:,解得:,∴直线AB的解析式为y=x+,当x=−1时,y=,∴所求点C的坐标为(−1,);(3)如图所示,①当以OA为对角线时,∵OA与MN互相垂直且平分,∴点M1(−1,−),②当以OA为边时,∵OA=MN且OA∥MN,即MN=2,MN∥x轴,设N(−1,t),则M(−3,t)或(1,t)将M点坐标代入,解得,t=,∴M2(−3,),M3(1,)综上:点M的坐标为:(-1,-),或(-3,)或(1,).【点睛】本题是一道二次函数综合题,主要考查了二次函数的性质、最短路径、平行四边形等知识.综合运用所学知识,并进行分类讨论是解题的关键.22、(1);(2).【分析】(1)利用频率估计概率,通过计算“厨房垃圾”投放正确的百分比估计“厨房垃圾”投放正确的概率.(2)先画树状图展示所有9种可能的结果数,再找出垃圾投放正确的结果数,然后根据概率公式计算;【详解】解:(1)∵∴估计“厨房垃圾”投放正确的概率为;画树状图如下∵共有种等可能的结果数,其中垃圾投放正确的结果数为,∴垃圾投放正确的概率为故答案是:(1);(2)【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出,再从中选出符合事件的结果数目,求出概率.23、【分析】连接PC,则PC=DE=2,在CB上截取CM=0.25,得出△CPM∽△CBP,即可得出结果.【详解】解:连接PC,则PC=DE=2,∴P在以C为圆心,2为半径的圆弧上运动,在CB上截取CM=0.25,连接MP,∴,∴,∵∠MCP=∠PCB,∴△CPM∽△CBP,∴PM=PB,∴PA+PB=PA+PM,∴当P、M、A共线时,PA+PB最小,即.【点睛】本题考查了最短路径问题,相似三角形的判定与性质,正确做出辅助线是解题的关键.24、(1)20%(2)8640万人次【分析】(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数5000(1+x)2万人次.根据题意得方程求解.(2)2012年我国公民出境旅游总人数约1(1+x)万人次.【详解】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000(1+x)2=1.解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为1(1+x)=1×120%=8640万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.25、(1)n=3,k=1,点B的坐标为(2,3);(2)x≤﹣2或x>3;(3)点D的坐标为(2+,3);(2)存在,P(3,1).【分析】(1)把点A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业管理楼宇安全计划考核试卷
- 危险品仓储橡胶制品管理考核试卷
- 全球气候变化与企业应对策略考核试卷
- 新技术的学习与实践经验分享与探讨分享考核试卷
- 高层建筑施工污水排放合规方案
- 2024年个体工商户加盟协议
- 按揭车辆赠与合同模板
- 房屋租赁企业合同模板
- dv出租合同模板
- 大酒店折旧合同模板
- 品牌授权收费合同模板
- DB41-T 2689-2024 水利工程施工图设计文件编制规范
- 【学案】夏商周时期的科技与文化导学案 2024~2025学年统编版七年级历史上册
- 空气动力学数值方法:有限体积法(FVM):离散化技术与数值通量
- 北师大版九年级物理全一册电子课本教材
- 生产管理培训课件
- 《正确对待外来文化》名师课件
- 小学语文整本书阅读《夏洛的网》导读课公开课一等奖创新教学设计
- 中医食疗药膳学智慧树知到答案2024年四川护理职业学院
- 部编版(2024)一年级语文上册第7课《两件宝》精美课件
- DL∕T 1795-2017 柔性直流输电换流站运行规程
评论
0/150
提交评论