2022-2023学年浙江省宁波市东方中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2022-2023学年浙江省宁波市东方中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2022-2023学年浙江省宁波市东方中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2022-2023学年浙江省宁波市东方中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2022-2023学年浙江省宁波市东方中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC2.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B. C. D.3.从一个装有3个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球,两次摸到的都是红球的概率是()A. B. C. D.4.如图,弦和相交于内一点,则下列结论成立的是()A.B.C.D.5.在双曲线的每一分支上,y都随x的增大而增大,则k的值可以是()A.2 B.3 C.0 D.16.如图,在中,,,,以边的中点为圆心作半圆,使与半圆相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是()A.8 B.9 C.10 D.127.如图,的直径,是的弦,,垂足为,且,则的长为()A.10 B.12 C.16 D.188.抛物线y=2(x﹣1)2+3的对称轴为()A.直线x=1B.直线y=1C.直线y=﹣1D.直线x=﹣19.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A. B. C. D.10.﹣3的绝对值是()A.﹣3 B.3 C.- D.11.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是()A. B. C. D.1212.如图,函数与函数在同一坐标系中的图象如图所示,则当时().A.1x1 B.1x0或x1 C.1x1且x0 D.0x1或x1二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,点,点,作第一个正方形且点在上,点在上,点在上;作第二个正方形且点在上,点在上,点在上…,如此下去,其中纵坐标为______,点的纵坐标为______.14.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为______________________.15.若,则______.16.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.17.如图,是一个立体图形的三种视图,则这个立体图形的体积为______.18.一个盒子中装有个红球,个白球和个蓝球,这些球除了颜色外都相同,从中随机摸出两个球,能配成紫色的概率为_____.三、解答题(共78分)19.(8分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:.求作:菱形,使菱形的顶点落在边上.20.(8分)已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC边中点.点M为线段BC上的一个动点(不与点C,点D重合),连接AM,将线段AM绕点M顺时针旋转90°,得到线段ME,连接EC.(1)如图1,若点M在线段BD上.①依据题意补全图1;②求∠MCE的度数.(2)如图2,若点M在线段CD上,请你补全图形后,直接用等式表示线段AC、CE、CM之间的数量关系.21.(8分)如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.22.(10分)如图,是的直径,是圆心,是圆上一点,且,是延长线上一点,与圆交于另一点,且.(1)求证:;(2)求的度数.23.(10分)如图,在Rt△ABC中,∠ABC=90º,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.(1)求证:AE=CE.(2)若EF与⊙O相切于点E,交AC的延长线于点F,且CD=CF=2cm,求⊙O的直径.(3)若EF与⊙O相切于点E,点C在线段FD上,且CF:CD=2:1,求sin∠CAB.24.(10分)如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:.25.(12分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:,,,)26.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】全等三角形的对应边相等,对应角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【详解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C选项正确.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正确.∠AFE和∠BFE找不到对应关系,故不一定相等.故选:B.【点睛】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.2、B【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC=,∴PA=tan60°×1=.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.3、D【分析】画树状图得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.【详解】解:画树状图得:∵共有20种等可能的结果,两次摸到的球的颜色都是红球的有6种情况,

∴两次摸到的球的颜色相同的概率为:.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.4、C【分析】连接AC、BD,根据圆周角定理得出角相等,推出两三角形相似,根据相似三角形的性质推出即可.【详解】连接AC、BD,∵由圆周角定理得:∠A=∠D,∠C=∠B,∴△CAP∽△BDP,∴∴,所以只有选项C正确.故选C.【点睛】本题考查了相似三角形的判定与性质、圆周角定理,连接AC、BD利用圆周角定理是解题的关键.5、C【分析】根据反比例函数的性质:当k-1<0时,在每一个象限内,函数值y随着自变量x的增大而增大作答.【详解】∵在双曲线的每一条分支上,y都随x的增大而增大,∴k-1<0,∴k<1,故选:C.【点睛】本题考查了反比例函数的性质.对于反比例函数,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.6、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,

此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,

∵AB=20,AC=8,BC=6,

∴AB2=AC2+BC2,∴∠C=90°,

∵∠OP2A=90°,∴OP2∥BC.

∵O为AB的中点,∴P2C=P2A,OP2=BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=AC=4=OQ2.

∴P2Q2最小值为OQ2-OP2=4-2=2,

如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,

P2Q2最大值=AO+OQ2=5+4=9,

∴PQ长的最大值与最小值的和是20.

故选:C.【点睛】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.7、C【分析】连接OC,根据圆的性质和已知条件即可求出OC=OB=,BE=,从而求出OE,然后根据垂径定理和勾股定理即可求CE和DE,从而求出CD.【详解】解:连接OC∵,∴OC=OB=,BE=∴OE=OB-BE=6∵是的弦,,∴DE=CE=∴CD=DE+CE=16故选:C.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.8、A【解析】解:∵y=2(x﹣1)2+3,∴该抛物线的对称轴是直线x=1.故选A.9、C【解析】∵2个红球、3个白球,一共是5个,∴从布袋中随机摸出一个球,摸出红球的概率是.故选C.10、B【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.11、C【分析】设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【详解】∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,

),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-•-•-••(b-)=9,∴k=,故选:C【点睛】考核知识点:反比例函数系数k的几何意义.结合图形,分析图形面积关系是关键.12、B【分析】根据题目中的函数解析式和图象可以得到当时的x的取值范围,从而可以解答本题.【详解】根据图象可知,当函数图象在函数图象上方即为,∴当时,1x0或x1.故选B.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于利用函数图象解决问题.二、填空题(每题4分,共24分)13、【分析】先确定直线AB的解析式,然后再利用正方形的性质得出点C1和C2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB的解析式y=kx+b则有:,解得:所以直线仍的解析式是:设C1的横坐标为x,则纵坐标为∵正方形OA1C1B1∴x=y,即,解得∴点C1的纵坐标为同理可得:点C2的纵坐标为=∴点Cn的纵坐标为.故答案为:,.【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键.14、【分析】设平均每次降低的百分率为x,根据某种药原来每瓶为40元,经过两次降价,现在每瓶售价25.1元列出方程,解方程即可.【详解】设平均每次降低的百分率为x,根据题意得:40(1﹣x)2=25.1.故答案为:40(1﹣x)2=25.1.【点睛】本题考查了一元二次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.15、-1【分析】由可得,,再代入代数式计算即可.【详解】∵,∴,∴原式=,故填:-1.【点睛】本题考查比例的基本性质,属于基础题型.16、【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴=,∴=解得x=,∴阴影部分面积为:S△ABC=××1=,故答案为:.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.17、【分析】根据该立体图形的三视图可判断该立体图形为圆柱,且底面直径为8,高为8,根据圆柱的体积公式即可得答案.【详解】∵该立体图形的三视图为两个正方形和一个圆,∴该立体图形为圆柱,且底面直径为8,高为8,∴这个立体图形的体积为×42×8=128,故答案为:128【点睛】本题考查由三视图判断几何体;利用该几何体的三视图得到该几何体底面半径、高是解题的关键.18、【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次摸到的球的颜色能配成紫色的情况,再利用概率公式即可求得答案.【详解】解:列表得:∵共有种等可能的结果,两次摸到的球的颜色能配成紫色的有种情况∴两次摸到的求的颜色能配成紫色的概率为:.故答案是:【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共78分)19、作图见解析.【分析】由在上,结合菱形的性质,可得在的垂直平分线上,利用菱形的四条边相等确定的位置即可得到答案.【详解】解:作的垂直平分线交于,以为圆心,为半径作弧,交垂直平分线于,连接,则四边形即为所求.【点睛】本题考查的是菱形的判定与性质,同时考查了设计与作图,掌握以上知识是解题的关键.20、(1)①见解析;②∠MCE=∠F=45°;(2)【分析】(1)①依据题意补全图即可;②过点M作BC边的垂线交CA延长线于点F,利用同角的余角相等,得到∠FMA=∠CME,再通过等腰三角形的判定得到FM=MC,再通过判断,得到∠MCE的度数.(2)通过证明,得到AF=EC,将转化为,再在Rt△FMC中,利用边角关系求出FC=,即可得到.【详解】(1)①补全图1:②解:过点M作BC边的垂线交CA延长线于点F∵FM⊥BC∴∠FMC=90°∴∠FMA+∠AMC=90°∵将线段AM绕点M顺时针旋转90°,得到线段ME∴∠AME=90°,AM=ME∴∠CME+∠AMC=90°∴∠FMA=∠CME∵∠BAC=90°,AB=AC,∴∠FCM=45°∴∠F=∠FCM=45°∴FM=MC在△FMA和△CME中∴∴∠MCE=∠F=45°(2)解:过点M作BC边的垂线交CA延长线于点F∵FM⊥BC∴∠FMC=90°∴∠FME+∠EMC=90°∵将线段AM绕点M顺时针旋转90°,得到线段ME∴∠AME=90°,AM=ME∴∠FME+∠AMF=90°∴∠EMC=∠AMF∵∠BAC=90°,AB=AC,∴∠FCM=45°∴∠MFC=90°-∠FCM=45°∴FM=MC在△FMA和△CME中∴∴AF=EC∴∵∠FCM=45°,∠FMC=90°∴FC=∴综上所述,【点睛】本题是旋转图形考查,掌握旋转前后不变的量是解答此题的关键,涉及到的知识点相似的判定及性质、等腰三角形的性质等.21、(1)详见解析;(2)详见解析;(3)N点的坐标为(0,﹣1);(4)D点坐标为(3,0).【解析】试题分析:(1)根据题中给出的损矩形的定义,从图找出只有一组对角是直角的四边形即可;(2)证明四边形BADM四个顶点到BD的中点距离相等即可;(3)利用同弧所对的圆周角相等可得∠MAD=∠MBD,进而得到OA=ON,即可求得点N的坐标;(4)根据正方形的性质及损矩形含有的直角,利用勾股定理求解.(1)四边形ABMD为损矩形;(2)取BD中点H,连结MH,AH∵四边形OABC,BDEF是正方形∴△ABD,△BDM都是直角三角形∴HA=BDHM=BD∴HA=HB=HM=HD=BD∴损矩形ABMD一定有外接圆(3)∵损矩形ABMD一定有外接圆⊙H∴MAD=MBD∵四边形BDEF是正方形∴MBD=45°∴MAD=45°∴OAN=45°∵OA=1∴ON=1∴N点的坐标为(0,-1)(4)延长AB交MG于点P,过点M作MQ⊥轴于点Q设MG=,则四边形APMQ为正方形∴PM=AQ=-1∴OG=MQ=-1∵△MBP≌△MDQ∴DQ=BP=CG=-2∴MN2ND2MD2∵四边形DMGN为损矩形∴∴∴=2.5或=1(舍去)∴OD=3∴D点坐标为(3,0).考点:本题考查的是确定圆的条件,正方形的性质点评:解答本题的关键是理解损矩形的只有一组对角是直角的性质,22、(1)见解析;(2)【分析】(1)连接,利用等腰三角形的性质证得,,再利用等角的关系得;(2)根据(1)可直接求得的度数.【详解】(1)如图,连接.,,,,.又,,,(2)由(1)得,.【点睛】此题考查圆的性质,等腰三角形的性质,题中依据连接OB是解题的关键.23、(1)见解析;(2)2cm;(3)【分析】(1)连接DE,根据可知:是直径,可得,结合点D是AC的中点,可得出ED是AC的中垂线,从而可证得结论;(2)根据,可将AE解出,即求出⊙O的直径;(3)根据等角代换得出,然后根据CF:CD=2:1,可得AC=CF,继而根据斜边中线等于斜边一半得出,在中,求出sin∠CAB即可.【详解】证明:(1)连接,,,∴是直径∴,即,又∵是的中点,∴是的垂直平分线,∴;(2)在和中,,故可得,从而,即,解得:AE=2;即⊙O的直径为2.(3),,,是的中点,,,在中,.故可得.【点睛】本题主要考查圆周角定理、切线的性质及相似三角形的性质和应用,属于圆的综合题目,难度较大,解答本题的关键是熟悉各个基础知识的内容,并能准确应用.24、见解析.【分析】根据两角相等的两个三角形相似证明△ADC∽△BEC即可.【详解】证明:∵AD,BE分别是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(对顶角相等)∴△ADC∽△BEC∴.【点睛】本题考查了相似三角形的判定,熟练掌握形似三角形的判定方法是解答本题的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论