版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.从一个装有3个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球,两次摸到的都是红球的概率是()A. B. C. D.2.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.43.如图,矩形是由三个全等矩形拼成的,与、、、、分别交于点、、、、,设,,的面积依次为、、,若,则的值为()
A.6 B.8 C.10 D.14.用配方法解方程时,应将其变形为()A. B. C. D.5.将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A. B. C. D.6.下列运算中,正确的是().A. B. C. D.7.中,,,,的值为()A. B. C. D.28.对于抛物线,下列说法正确的是()A.开口向下,顶点坐标 B.开口向上,顶点坐标C.开口向下,顶点坐标 D.开口向上,顶点坐标9.如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的表达式是()A. B. C. D.10.如果、是一元二次方程的两根,则的值是()A.3 B.4 C.5 D.6二、填空题(每小题3分,共24分)11.已知正方形的一条对角线长,则该正方形的周长是___________.12.如图,一抛物线与轴相交于,两点,其顶点在折线段上移动,已知点,,的坐标分别为,,,若点横坐标的最小值为0,则点横坐标的最大值为______.13.数学学习应经历“观察、实验、猜想、证明”等过程.下表是几位数学家“抛掷硬币”的实验数据:实验者棣莫弗蒲丰德·摩根费勒皮尔逊罗曼诺夫斯基掷币次数204840406140100003600080640出现“正面朝上”的次数10612048310949791803139699频率0.5180.5070.5060.4980.5010.492请根据以上实验数据,估计硬币出现“正面朝上”的概率为__________.(精确到0.1)14.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.15.抛物线向右平移个单位,向上平移1个单位长度得到的抛物线解析式是_____16.有一列数,,,,,,则第个数是_______.17.计算_________.18.若关于的方程的一个根是1,则的值为______.三、解答题(共66分)19.(10分)如图,灯塔在港口的北偏东方向上,且与港口的距离为80海里,一艘船上午9时从港口出发向正东方向航行,上午11时到达处,看到灯塔在它的正北方向.试求这艘船航行的速度.(结果保留根号)20.(6分)如图,在中,,过点作的平行线交的平分线于点,过点作的平行线交于点,交于点,连接,交于点.(1)求证:四边形是菱形;(2)若,,求的长.21.(6分)若a≠0且a2﹣2a=0,求方程16x2﹣4ax+1=3﹣12x的根.22.(8分)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=1.求证:对于任意实数t,方程都有实数根;23.(8分)如图,一次函数图象经过点,与轴交于点,且与正比例函数的图象交于点,点的横坐标是.请直接写出点的坐标(,);求该一次函数的解析式;求的面积.24.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)25.(10分)(1)计算:4sin260°+tan45°-8cos230°(2)在Rt△ABC中,∠C=90°.若∠A=30°,b=5,求a、c.26.(10分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是__________阶准菱形;②小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点在上)使点落在边上的点,得到四边形,请证明四边形是菱形.(2)操作、探究与计算:①已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;②已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形.
参考答案一、选择题(每小题3分,共30分)1、D【分析】画树状图得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.【详解】解:画树状图得:∵共有20种等可能的结果,两次摸到的球的颜色都是红球的有6种情况,
∴两次摸到的球的颜色相同的概率为:.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.2、C【分析】过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值为22,故答案为C.【点睛】本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的3、B【分析】由已知条件可以得到△BPQ∽△DKM∽△CNH,然后得到△BPQ与△DKM的相似比为,△BPQ与△CNH的相似比为,由相似三角形的性质求出,从而求出.【详解】解:∵矩形是由三个全等矩形拼成的,∴AB=BD=CD,AE∥BF∥DG∥CH,∴四边形BEFD、四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE∥DF∥CG,∴∠BPQ=∠DKM=∠CNH,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∴△BPQ∽△DKM∽△CNH,∵,,∴,,∴,,∵,∴,∴;故选:B.【点睛】本题考查了相似三角形的判定和性质,矩形的性质以及平行四边形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质,正确得到,,从而求出答案.4、D【分析】二次项系数为1时,配一次项系数一半的平方即可.【详解】故选:D【点睛】本题考查的是解一元二次方程的配方法,配方法要先把二次项系数化为1,再配一次项系数一半的平方是关键.5、D【分析】由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.【详解】解:,即抛物线的顶点坐标为,把点向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为,所以平移后得到的抛物线解析式为.故选D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6、C【解析】试题分析:3a和2b不是同类项,不能合并,A错误;和不是同类项,不能合并,B错误;,C正确;,D错误,故选C.考点:合并同类项.7、C【分析】根据勾股定理求出斜边AB的值,在利用余弦的定义直接计算即可.【详解】在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB=,∴==,故选:C.【点睛】本题主要考查锐角三角函数的定义,解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数是定义.8、A【详解】∵抛物线∴a<0,∴开口向下,∴顶点坐标(5,3).故选A.9、C【分析】如图,过点A作AC⊥x轴于点C,构建矩形ABOC,根据反比例函数系数k的几何意义知|k|=四边形ABOC的面积.【详解】如图,过点A作AC⊥x轴于点C.则四边形ABOC是矩形,∴S=S=1,∴|k|=S=S+S=2,∴k=2或k=−2.又∵函数图象位于第一象限,∴k>0,∴k=2.则反比函数解析式为.故选C.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握反比例函数的性质.10、B【解析】先求得函数的两根,再将两根带入后面的式子即可得出答案.【详解】由韦达定理可得α+β=-3,又=3--=)=1+3=4,所以答案选择B项.【点睛】本题考察了二次方程的求根以及根的意义和根与系数的关系,根据得到的等量关系是解决本题的关键.二、填空题(每小题3分,共24分)11、【分析】对角线与两边正好构成等腰直角三角形,据此即可求得边长,即可求得周长.【详解】令正方形ABCD,对角线交于点O,如图所示;∵AC=BD=4,AC⊥BD∴AO=CO=BO=DO=2∴AB=BC=CD=AD=∴正方形的周长为故答案为.【点睛】此题主要考查正方形的性质,熟练掌握,即可解题.12、7【分析】当点横坐标的最小值为0时,抛物线顶点在C点,据此可求出抛物线的a值,再根据点横坐标的最大值时,顶点在E点,求出此时的抛物线即可求解.【详解】当点横坐标的最小值为0时,抛物线顶点在C点,设该抛物线的解析式为:y=a(x+2)2+8,代入点B(0,0)得:0=a(x+2)2+8,则a=−2,即:B点横坐标取最小值时,抛物线的解析式为:y=-2(x+2)2+8.当A点横坐标取最大值时,抛物线顶点应取E,则此时抛物线的解析式:y=-2(x−8)2+2,令y=0,解得x1=7,x2=9∴点A的横坐标的最大值为7.故答案为7.【点睛】此题主要考查二次函数的平移问题,解题的关键是熟知待定系数法求解解析式.13、0.1【分析】由于表中硬币出现“正面朝上”的频率在0.1左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率为0.1.【详解】解:因为表中硬币出现“正面朝上”的频率在0.1左右波动,
所以估计硬币出现“正面朝上”的概率为0.1.
故答案为0.1.【点睛】本题考查了利用频率估计概率,随实验次数的增多,值越来越精确.14、3:2【解析】因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为:3:2.15、【分析】根据图象的平移规律,可得答案.【详解】解:将抛物线向右平移个单位,向上平移1个单位长度得到的抛物线的解析式是将抛物线,
故答案为:.【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.16、【分析】原来的一列数即为,,,,,,于是可得第n个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.17、【分析】先分别计算特殊角的三角函数值,负整数指数幂,再合并即可得到答案.【详解】解:故答案为:【点睛】本题考查的是特殊角三角函数的计算,负整数指数幂的运算,掌握以上知识点是解题的关键.18、-6【分析】把x=1代入原方程就可以得到一个关于k的方程,解这个方程即可求出k的值.【详解】把代入方程得到,解得.故答案为:−6.【点睛】本题考查了一元二次方程的解,将方程的根代入并求值是解题的关键.三、解答题(共66分)19、海里/时【分析】利用直角三角形性质边角关系,BO=AO×cos30°求出BO,然后除以船从O到B所用时间即可.【详解】解:由题意知:∠AOB=30°,在Rt△AOB中,OB=OA×cos∠AOB=80×=40(海里),航行速度为:(海里/时).【点睛】本题考查锐角三角函数的运用,熟练掌握直角三角形的边角关系是关键.20、(1)证明见解析;(2).【分析】(1)根据平行四边形的定义可知四边形是平行四边形,然后根据角平分线的定义和平行线的性质可得,根据等角对等边即可证出,从而证出四边形是菱形;(2)根据菱形的性质和同角的余角相等即可证出,利用锐角三角函数即可求出AH和AG,从而求出GH.【详解】(1)证明:,,四边形是平行四边形,平分,,,,,四边形是菱形;(2)解:,,∵四边形是菱形∴,,,,,四边形是菱形,,,,.【点睛】此题考查的是菱形的判定及性质、平行线的性质、角平分线的定义、等腰三角形的性质和解直角三角形,掌握菱形的定义及性质、平行线、角平行线和等腰三角形的关系和用锐角三角函数解直角三角形是解决此题的关键.21、x1=﹣,x2=【分析】由a≠0且a2﹣2a=0,得a=2,代入方程16x2﹣4ax+1=3﹣12x,求得根即可【详解】解:∵a≠0且a2﹣2a=0,∴a(a﹣2)=0,∴a=2,故方程16x2﹣8x+1=3﹣12x,整理得8x2+2x﹣1=0,(2x+1)(4x﹣1)=0,解得.【点睛】本题考查了一元二次方程的解法,正确理解题意.熟练掌握一元二次方程的解法步骤是解决本题的关键.22、见解析【分析】根据方程的系数结合根的判别式,可得出△=(t-3)2≥1,由此可证出:对于任意实数t,方程都有实数根.【详解】证明:△=[-(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2,∴对于任意实数t,都有(t﹣3)2≥1,∴方程都有实数根.【点睛】本题考查了根的判别式,解题的关键是:牢记“当△≥1时,方程有实数根”.23、(1);(2);(3)1【分析】(1)根据正比例函数即可得出答案;(2)根据点A和B的坐标,利用待定系数法求解即可;(3)先根据题(2)求出点C的坐标,从而可知OC的长,再利用三角形的面积公式即可得.【详解】(1)将代入正比例函数得,故点的坐标是;(2)设这个一次函数的解析式为把代入,得解方程组,得故这个一次函数的解析式为;(3)在中,令,得即点的坐标是,则的面积故的面积为1.【点睛】本题考查了一次函数的几何应用、利用待定系数法求一次函数的解析式,掌握一次函数的图象与性质是解题关键.24、17.3米.【解析】分析:过点C作于D,根据,得到,在中,解三角形即可得到河的宽度.详解:过点C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:这条河的宽是米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.25、(1)2;(2)a=5,c=1【分析】(1)分别把各
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林师范大学《美术概论》2021-2022学年第一学期期末试卷
- 吉林师范大学《环境影响评价技术导则》2021-2022学年第一学期期末试卷
- 阳光房压型铝合金板施工和保温方案
- 吉林师范大学《地图学》2021-2022学年第一学期期末试卷
- 吉林大学《英汉翻译基础》2021-2022学年第一学期期末试卷
- 吉林大学《外科总论E》2021-2022学年第一学期期末试卷
- 幼儿园食品安全责任管理制度
- 2024工商注册房屋租赁合同
- 商业综合体绿化景观设计施工方案
- 吉林大学《软件工程专业导论》2021-2022学年期末试卷
- 内科学白血病教材教学课件
- 生物降解建筑材料PHA薄膜生产技术
- 基层区域医疗信息化(云HIS)解决方案
- 急诊急救知识培训
- T-ZJFS 010-2024 银行业金融机构转型贷款实施规范
- 六年级数学课件-圆的面积【全国一等奖】
- 新疆地方教材五年级可爱的中国计划、教案
- 基于PLC的热水箱恒温控制系统
- 《昆虫病原线虫》课件
- 船员劳务市场分析
- 2017版高中物理新课标解读
评论
0/150
提交评论