原子物理学-杨福家-第四版(完整版)课后答案_第1页
原子物理学-杨福家-第四版(完整版)课后答案_第2页
原子物理学-杨福家-第四版(完整版)课后答案_第3页
原子物理学-杨福家-第四版(完整版)课后答案_第4页
原子物理学-杨福家-第四版(完整版)课后答案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

原子物理学杨福家第四版(完整版)课后答案原子物理习题库及解答第一章111,222,,mvmvmv,,,,,,,ee222,1-1由能量、动量守恒,,,mvmvmv,,,,,,ee,(这样得出的是电子所能得到的最大动量,严格求解应用矢量式子)Δpθmv2,,,得碰撞后电子的速度pv,em,m,e,故v,2ve,2m,p1,mv2mv4,e,eee由tg,~,~~,~,2.5,10(rad)mvmv,,,,pm400,a79,2,1.44,1-2(1)b,ctg,,22.8(fm)222,5236.02,102,132,5dN(2),,bnt,3.14,[22.8,10],19.3,,9.63,10N19724Ze4,79,1.441-3Au核:r,,,50.6(fm)m22,4.5mv,,24Ze4,3,1.44Li核:r,,,1.92(fm)m22,4.5mv,,2ZZe1,79,1.4412E,,,16.3(Mev)1-4(1)pr7m2ZZe1,13,1.4412E,,,4.68(Mev)(2)pr4m22NZZeZZeds,,242401212dN1-5()ntd/sin()t/sin,,,,,2N4E24EAr2pp1323,79,1.44,106.02,101.5123,,(),,1.5,10,,24419710(0.5),822,610,6.02,1.5,79,1.44,1.5,,8.90,101973aa,,1-6时,b,ctg,,,,6012222aa,,时,b,ctg,,1,,90222232()2,dNb112?,,,32dN1,b222()2,32,324,101-7由,得b,bnt,4,10,,nta,由,得b,ctg22,3,3a24,104,10(),,2,23106.02,10,ntctg2,323.14,,2,10,(5.67)181,242,5.96,10(cm)a2(),d1,244?,,(),5.96,10,16,23.8(b),4d,4sin21-8(1)设碰撞前m的速度为v,动量为p。111,,碰撞后m的动量为,m的动量为pp1212由动量、能量守恒可得:m,,,1,p,,vn,p1101m,m12m,,,2,p,,,vn,p2101m,m12mm12其中,将它代入上两式可得:,,m,m12mpm,,,211,p,n,p101m,mm,m1212mpm,,,212,p,,n,p201m,mm,m1212,它们之间的矢量关系可用下图表示,其中圆心C为质心,表示质心系里m碰撞n10mpmp2111OC,OB,,v,,AO,后的速度。1m,mm,m1212当时,A点在圆上m,m12时,A点在圆上m,m12时,A点在圆外m,m12,OCm2由图可知,sin,,,maxLm1AO,(2)因(请参阅朗道的力学)m,m,?sin,,1,?,,9021LmaxLmax2ZZe1,79,1.44121-9对Au核:a,,,114(fm)1E1p2ZZe1,47,1.4412对Ag核:a,,,67.7(fm)2E1p114b,,3.73,213(fm)1a,2由可求得b,ctg2267.7b,,3.73,126(fm)2222dN?,,bnt,70%,,bnt,30%1122N,3,3,3,4.57,10,1.25,10,5.82,1023236.02,106.02,10,3,3(其中;)nt,,1.5,10nt,,1.5,101219710822,,,,,ZZe2sindsinZZed221212,,()NNnt,1-10,2()Nnt,4,4,4,Esin4Esin222ZZe12,2b12,N2nt()4[sin],,,,,a24E212,49,N,9.38,10,6.24,10,0.242,1.41,10(1)12,410,N,9.38,10,6.24,10,3,1.76,10(2),12,411(3),N(,,10),9.38,10,6.24,10,131,7.68,10,121112?,N(,,10),9.38,10,7.68,10,8.61,10第二章3hc312.4,102-1(1)(Å),,,,6.53,1001.9E0C3,,,3,10140,6.53,10,10,4.59,10(Hz)33hC12.4,10(2)(Å),,,,3.65,10EE,1.9,1.5e02222nanZ,0,ZRhCr,v,C,E,,,,2-2利用公式2nnn2nZnZmee3E,Ehc12.4,1021,V,,,,11eeVV112,6(1)H原子:(Å),r,,0.529v,,c,2.19,10(m/s)112mee241,6(Å),r,,4r,2.12v,,c,1.09,10(m/s)21222mee21,+6He离子:(Å),r,,0.265v,2,c,4.38,10(m/s)1122mee6(Å),r,4r,1.06v,,C,2.19,10(m/s)2211++6Li离子:r,,0.529,0.176(Å),v,3,c,6.57,10(m/s)11336(Å),r,4r,0.704v,,C,3.29,10(m/s)2212(2)H原子:E,,Rhc,,13.6(eV)12+E,,ZRhc,,4,13.6,,54.4(eV)He离子:12++Li离子:E,,ZRhc,,9,13.6,,122.4(eV)1(E,E)(,3.40,13.6)21(3)H原子:V,,,10.2(V)1ee3hc12.4,10(Å),,,,12161eV10.21+He离子:V,4,10.2,40.8(V)1312.4,10(Å),,,304140.8++Li离子:V,9,10.2,91.8(V)1312.4,10,,,135(Å)191.82-3,E,E,E,9,(13.6,3.4),91.8(eV)212-4,E,E,E,10.2(eV)21由能量、动量守恒可得质子的阈能:m,m12E,,E,2,E,2,10.2,20.4(eV)thm12E4th?v,,6.25,10(m/s)m,55N,(,3.40,13.6)/8.62,10,293,1.18,10/293,403,1758n,e,4,e,4,e,4,102-5(1)N211175N1,Ne现,?,n14N,314931,,22.4,10,0.93,10V故(米)236.02,10(2)室温下氢原子n,1,?,E,E,E,,1.51,13.6,12.09(eV)312-6只观察到赖曼系的头四条谱线1216Å,1026Å,973Å,950Åhc3hchc36hc2-7,,,,,,,2212E,EE,E4ZRhc5ZRhc2132(108hc,20hc)?,,,,22115ZRhc32hc8888,12.4,10Z?,,,4Rhc,,15(,)15,13.6,133721故Z,2111222-8利用h,,W,mv?mv,h,,W,40.8,13.6,27.2(eV),mv2,c2226?v,2,c,3.10,10(m/s)mmmR12e,,2-9利用折合质量,,,,R,22m,m122,,(1)21.06()r,,a,A12,e10.2(2)V=13.6/2=6.8(V)V,,5.1(V)电离124(3)(Å),,,1215,2,243013Rmm,p,,,186m2-10em,m,pa,31(1)(Å)r,,2.8,101186(2)E,,186Rhc,,2530(eV)1312.4,10(3)(Å),,,,4.90minEE,,1m(1,)mmHD2-11,将代入,0.50020,0.999728mM(1,)DMHmm(1,),0.999728,1,0.50020MMHHmM3,4H?,1.835,100.499528,1,0.999728,2.72,10mMH,19hh,,10.2,1.6,10mv,,?v,,,3.26(m/s)2-12(1),27101.67,10,3,10Cmc2(h)h,,E10.2RE,,?,,(2)反冲能6,9R22h,2,938,10,5.44,102mc2mc2-13利用选择定则,共有6条。,l,,116,12-14(1)T,T,,1.697,10(m)sp33589316,1T,,2.447,10(m)p340866,1上两式相加得,T,4.144,10(m)s319,?E,,Thc,,5.14(eV),,8.225,10J3s3s19,E,,Thc,,3.03(eV),,4.848,10J3p3pE,EE,E3p3s,3s(2)V,,5.14(V)V,,2.11(V)1ee第三章,,543-1,E,2,B,2,B,2,5.79,10,1.2,1.39,10(eV)szBj(j,1),l(l,1),s(s,1)14g,1,,1,,3-22j(j,1)552,,gj(j,1),,,15,,,1.55,jBBB56226,,gm,,(,,,,,),jzjBB55553355(,1),4(4,1),(,1)j(j,1),l(l,1),s(s,1)22223-3g,1,,1,,0332j(j,1)2(,1)22?,,0j2,272dB107.87,1.66,10,(400),0.002MvZ,,,243-49.27,10,2,0.10,0.252,,d,DszdZ=124(T/m)(g=2,m=?1/2)JJj(j,1),l(l,1),s(s,1)242g,1,,2,,3-52j(j,1)155232,,,0.1,0.3,5,B,B52D,Z,2Z,2,d,,,2,3ZMv2,50,10,Z,10.4(mm)343-6?j,,且,故分裂成四条。g,23412,,,,,gmu,,jzjjBBB3232,B22,3,Z,,?,Z,,Z,,0.60,,0.40(cm),,ZB333,312.4,10,29.6,U,hc,,,,3.67,103-78104242Z1,(Z)mc,2220UmC,,,,,又302nl(l1),1624++16,,U?Z,,81?Z,3是Li.2,13.64242(),,zmC,mC00,,,U3-83322(1),nll42,U,mC0,,U,2B,?B,,,0.391(T)又B,32,2,B,2B3-9(略)3-10能级图:3S分裂成三条,g=213p不分裂0,E,g,B,2,BBB,5,E2,5.79,102B,,1~B,v,,,,93.4(m)3,10hChc12.4,10,10~故不是正常塞曼效应。,v,L3-11参照书图15.7,5B,5.79,10,2.5,1BL,,,1.17(cm)3,8hc12.4,10,1042,1,1由此可计算得L,0.78(cm)L,1.56(cm)3315,1,1L,0.39(cm)L,1.95(cm)33,1L,1.17(cm)424:3-12(1)p,E,g,B,,B3BB23224:p,E,g,B,,B1BB2324s:,E,g,B,2,B1BB21,E,,E,2,B,,B,1.5,E(2)21BB13,,hc,3而,E,,7.36,10(eV)1,,12,33,0.5,E3,0.5,7.36,101?B,,,27.2(T),5,77,5.79,10B,,e,,(gSgL),,3-13(1)sl2me,BU,(2m,m)(2)sl2me,E,2,B(3)3S态的能级分裂:B,E,,B3P态的能级分裂:B能级图见p图书馆5.11。115B,~Bv,,3-14hc5,5.79,10,422~(Å)?,,,,,v,(1210),,0.0273312.4,10谱线分裂为三条:(Å),,,,,1210,0.02730(Å),,12100(Å),,,,,1210,0.02730第四章4-1,E,E,E,0,(24.5),24.5(eV)1,12,E,E,E,0,ZRhc,4,13.6,54.4(eV),22,E,,E,,E,24.5,54.4,78.9(eV)12,,1122222L,S,(J,S,L),,L(L,1),,,3,4-222,,51,2LSLS[J(J1)S(S1)L(L1)],,,,,,,,,,,,,,22J4-3,,,,3132,LSLS[J(J1)S(S1)L(L1)],,,,,,,,,,,,,,222,2224-4S,L,J,2LJcos,222(J,L,S)?cos,,,0.94262JL,,?,,1930?4-5价电子数为偶数的氦,Be,Mg,Ca,可能出现正常塞曼效应。S可能为0。12,4-6l,l,s,s,,先算L-S耦合12122,43210(,0时)5种可能状态SJ,,,,,,1,54321(S,1时),,L,,,,L,4,3,2,1,0,,,,,L,4,3,2,1共18种,,S,1,0J,,,L,1,321013种可能状态,,,1515,,,,l,,l21,,,,2222j-j耦合,j,j,,211313,,l,,l,,12,,2222,,55,jj,J,,,,,,,,时,54321012,22,53,jj,J,,,,,,时,432112,22共18种态,且出现相同J的次数也和L-S耦合相同。,35,jj,J,,,,,,时,432112,22,33,j,,j,时,3210,J,,,1222,424-7(1)np形成的电子态与np相同S,1S,0L31DD3,2,122131PP12,1,0130SS011313如考虑泡里原理只有,其中能量最低。DPSP22,1,00222251P,PP(2)np形成的电子态同np相同,故只有,其中态能量最低。31322233(3)同上题的LS耦合,由于非同科电子,故有,其中能量最低。GG5,4,334-8(2S,3P)所形成的原子态为LS=0S=131PP12,1,0根据跃迁的选择定则,s,0,,l,,1,,j,0,,1,共可产生10条光谱线:(若该电子被激发到2P态,则只发一条光谱)1故J=0,必定有的基态。4-9??m,0?l,0S,l0l?m,0?s,0,ss4-10m210-1-2mll12432102m,mll123210-11210-1-2010-1-2-3-10-1-2-3-4-2S=0时,M=43210–1–2–3–4L=4L=210–1–2L=2=0L=0S=1时,对角线上值不能取?M=3210–1–2–3L=3L=10–1L=1313131FG,F,D,P,S?有其中最低。44,3,222,1,0021S,J,0,,,0?4-11基态氦原子是,故不分裂,只有1束。0J12而硼原子的基态是,分裂为2束。PJ,1223234-12的电子组态为L,m,1,0,1,0PS3P,l15l1113,,,,,Sm,s2222s3J,S,24故基态为:S3224的电子组态为:L,m,1,0,1S3S3P,l16l11S,m,,,1,s22s(倒转次序)J,L,S,23故基态为:P21225L,1,S,P的电子组态为:,倒转次序,故基态为Cl3S3P31722第五章3512.4,105-1V,,10(V)0.124162,,0.248,10(z,1)5-2利用k,22c?(,1),,17.66,10Z16,,0.248,10k,解得(Z,1),42?Z,433312.4,105-3(应是电离一个L电子所做的功)E,,6.53,10(eV)L1.931?KK5-4的末态,而的末态J,?2J,1,4J,,2J,1,2,1,222KK谱线强度同末态数成正比,故比强2倍。,1,23hC12.4,10E,,,,,,87.9(KeV)K1)5-5(,0.141k,3hC12.4,10,(0.167,0.141)E,,,,,,13.6(KeV)L,0.167,0.141L,,,hc(,)hC,KK,E,,,,,,3.01(KeV)M,,,,M,KK,,,,hc(,)hC,KK,E,,,,,,0.62(KeV)N,,,,N,K,K,3hc12.4,10L,,,,1.17(2)的波长(Å)L,3,EE,10.6,10ML激发L系所需的最小能量为,E,E,E,13.6(KeV),L2dsin,,n,5-6利用,5.4(Å)?d,,,5.4,2sin2,0.52mC,0,5-7利用散射光子能量最小。,,,,180h11,cos,,r21mC0,?h,,,,0.511,0.17(MeV)0.5111,1,0.511322,电子的动能ThhmC,,,,,e031154,,224242MeVPEmCmCmC?,,,(),1,,0.68()e000,,CCC33,,,,,h,h,10,,2,mC205-8,联立可得2h,,20h,,5110,0,,h,,2mC,02,,h,,10,100,4,2550?h,,,55.7(KeV)2,,,hh,,5.7,2,25.7mCmC,p2p5-9,可得h,,5.7h,,,0,,h,,22mC,p2,,h,,解得:h,,54.6(MeV)5-10222mCmC2mC2000,,h,,,,2mC22202mCmCmC00011,cos,,,1,2,h,hh,2,故无论多大,不能产生正负电子偶。h,,2mCh,05-11采用质心系,反应后动量都为0,故只要考虑能量守恒。22,h,,mC,mC(反应后电子在质心系动量为0。)?,,00故有,不可能产生光电效应。m,m05-12能量守恒h,,E,E,,,h222动量守恒(),P,P,2PPcos,,,,,C222(E,E),P,P,,,,,?cos,2PP,,2EEmC2,2,,0,,1224224EmCEmC2,,,00故不能在真空中发生光子电子对过程。,118,1)先考虑:5-13((4d)S,m,,,1,s22ms,L,m,2,1,3,ls13,再同耦合:5SS,m,1,,,S22L,m,3,0,3,l39j,3,,2248F满壳层缺2个,倒转次序,故基态为?4d9232,E,RhC,(45,0.9),19.8(KeV)(2)k,4h,19.8?,,,0.038,2511mC02,(h),,,h(1,cos)故E,,e2,,1,(1,cos)2mC,h,0119.8,0.038,22,,3.76,10(eV)11,0.038,2,,,x52.5,,,,x,'x?x,x,,0.3,20.6(cm)I,Ie(3),()0x0.765,',,',32.32ln10,(,),,x?x,,,8.3,105-14(克/厘米)325,48,,第六章12.26U,10eV6-1,当时,(Å),,,3.88VU,100eV时,(Å),,1.23U,1000eV时,(Å),,0.388,per6-2(1),,1p,er22hhCPe,(2)E,,,,Ehre22me,2m,ree28mCE8,0.511er?,,,340EhC0.012e22216-3(1)mC,mC,mC?,2v,0.866C002,1,3hCh1.24,10,,,,,0.014(2)(Å)6ppC0.833,101,,2dsin,,2,1.8,,1.86-4(Å)2222p(hC)h?E,,,,0.025(eV)2222m,,2m()2mCp11222242226-5由得E,cp,mCp,E,E,E(E,2mC)kk000CChhC?,,,2pE(E,2mC)kk0hC,eV12.262meV1,,02V2mCr0eV,6其中V,V(1,),V(1,0.978,10V)r22mC0224E,mC,pE02c,,,(),16-6(1)2,mCEmC000E2(2)故E,(2,1)E,0.212(MeV)(),1,1?E,2EK00E0,,1,9,,6-7~,?,t,,1.59,10(s),,,,,,4,t4,tC,4,C,2,,,8{,t,,E,,,,t~,2,10(S)},2,C,C197E~C,p~Cp~~,9.85(MeV)6-82,x2,10x|y||z|,,,,,,,,,22abc|,|d,,Nedxedyedz6-9(1),,,,,,,,,,yabcxz,,,2abc,8Nedxedyedz,,,000218Nabc1N,,?,8abcaxx1111,,aaaedxae,,(),(1,)(2)0,0aae222yz||||z,,bcbcy111,,,,2bcbcedyedzedyedz(3),,(1,),,,,00,,bcbcbce426-10(1)|,(1,0,0;0,1,1)|2(2)|,(x,y,z;0,0,0)|dxdydz111111,,,1111112(3)|,(x,y,z;x,y,z)|dxdydzdxdydz111222111222,,,,,,0000002n,6-11设势阱边界为[0,a],则(x),sinx,naaaaa2121n,n,a2(sin)(1cos),,,,,xxxdxxxdxxdx,,,0002aaaaa222?(x,x),x,xaa2n12n,,222而x,xsinxdx,x(1,cosx)dx,,00aaaa3axn112,2a,,xxdx()cos0,0aaa32aaanan12,12,2a,,,xx,,xxdx[sin]2sin0,0anaana322,,2aaan22,,,xxdxsin,0ana32,222a,,a1a2n1a2naaa[xcosx]cosxdx,,,,,,,022,03,n2,nan,2n,a32n,222226aaaaa2()(1)?,,,,,,,,,,xxn,,22223412122,,nn1按经典理论,,粒子在空间出现的几率相同为p(x),?U,0aaa1a()故,,,xpxxdxxdx,,002a2aa1a222(),,,xxpxdxxdx,,003a222aaa22与时的量子结论一致。n,,x,x,,,3412r3,a211R(r),2()e6-1210a1r3r,a2211R(r),2()(1,)e212a12a122d|rR|10由及二阶导数小于0得r,a(第一玻尔半径),0m1dr22d|rR|21由及二阶导数小于0得r,4a,0m1dr222,222r114eea,2*20a0ee4ederdr,,,,,,,,,,,,,,,,,6-1333,,,,ra004rara,006-14(略)2,d(x)2mE2,,(x),06-15立方程:?:222,dx2,d(x)2m(V,E)30,,(x),0?:322,dx方程解为:?:,(x),012mE2,(x),AsinKx,BcosKxK,?:22222,mVE2(,)2,Kx03xCeK,(),,?:332,利用波函数标准条件:得B=0x,0,(x),,(x)12,Ka3---------(1)x,a,(x),,(x)AsinKa,Ce232,Ka3,,---------(2),(x),,(x)AKsinKa,,CKe23223V,EK(1)10,2得:或tgKa,,Ka,n,,sin22(2)K3V0V,E1,0由图解法,可判断存在束缚态的条件为:y,Ka,y,n,,sin122V02222mVh,,,02即Va,,,028m32m,2,2m(V,E)D0,p~e6-16由透射几率估计,由于分子都是宏观量,,?p~0第七章27-1根据原子的质量求B,,mC402Ca:,m,40.3298,39.96259,0.36721,B,,mC,0.36721,931,342(MeV)342BB,,,8.55(MeV)A40562Fe:,m,56.4634,55.9349,0.5285,B,,mC,0.5285,931,492(MeV)492BB,,,8.79(MeV)A56,33,1,6740A,,107-2,12.3,10(S),0.33,10(Ci)603,18,112.3,10A,,,,4.87,10(S)231N,6.02,10238,18,79ln2故(年)T,,0.693/4.87,10/3.15,10,4.5,10,,127-31克碳中碳14的含量为(克)M,1.3,10236.02,10,1210故(个)/克N,,1.3,10,5.59,100140.69310,1,1,1,1A,,5.59,10,0.21(sg),13(mg)故075730,3.15,10,1,1300A,,3(mg)而100ttA,,,tTT130AAeA由,,2?2,,,4.3300A3ln4.331.47(年)?t,()T,,T,2.12,5730,12147ln20.6931,7-4由天,/天?,,0.1,,10,,,tN,Ne054,NN(4),N(5),,1010,,e,e,0.064NN00,37-5,M,226.0254,222.0176,4.0026,5.2,10(u)2,3,MC,5.2,10,931,4.84(MeV)222E,,4.84,4.75(MeV)故,2264E,5.30,(1,),5.403(MeV)7-6002064E,4.50,(1,),4.587(MeV)01206故E,E,E,0.816(MeV)r0001,7-7变化时放出的能量为1.89,1.02,2.91(MeV),2K电子的结合能,~RhC(23,1),0.007(MeV)k故中微子的能量为E,2.91,0.007,2.903(MeV),,37-8(1),M,4.002603,14.00307,16.99913,1.007825,,1.282,10(u)2,3?反应能Q,,MC,,1.282,10,931,,1.194(MeV),3(2),M,1.007825,9.012183,6.015123,4.002603,2.28,10(u)2,3?反应能Q,,MC,2.28,10,931,2.13(MeV),37-9,M,1.007825,3.01605,1.008665,3.016029,,8.19,10(u)2,3?Q,,MC,,8.19,10,931,,0.763(MeV)3,1入射质子的能量E,,0.763,1.017(MeV)p31132又Q,(1,)E,(1,)E?E,[Q,E],0.928(MeV)npnp3343而E,Q,E,E,,0.763,0.928,3,1.309(MeV)Henp7-10参阅史包尔斯基采用原子质量的精确表达式:1A22233M,1.007825Z,1.008665(A,Z),aA,aA,a(,Z)/A,0.000627Z/A12321A,M3,0.00084,2a(,Z)/A,0.000627,2,Z/A,0由得,,032,Z2A(0.00084,a)33?Z,,0.001254A2a3由相当衰变最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论