版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省张家口市名校九年级数学第一学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.22.如图,是正方形与正六边形的外接圆.则正方形与正六边形的周长之比为()A. B. C. D.3.已知如图:为估计池塘的宽度,在池塘的一侧取一点,再分别取、的中点、,测得的长度为米,则池塘的宽的长为()A.米 B.米 C.米 D.米4.在圆内接四边形中,与的比为,则的度数为()A. B. C. D.5.设等边三角形的边长为x(x>0),面积为y,则y与x的函数关系式是()A.y=x2 B.y= C.y= D.y=6.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是()A.正面向上 B.正面不向上 C.正面或反面向上 D.正面和反面都不向上7.下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上8.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,与x轴交于A、B(-1,0),与y轴交于C.下列结论错误的是()A.二次函数的最大值为a+b+c B.4a-2b+c﹤0C.当y>0时,-1﹤x﹤3 D.方程ax2+bx+c=-2解的情况可能是无实数解,或一个解,或二个解.9.下列图形中,是中心对称的图形的是()A.直角三角形 B.等边三角形 C.平行四边形 D.正五边形10.如图,向量与均为单位向量,且OA⊥OB,令=+,则=()A.1 B. C. D.211.二次函数y=(x+2)2-3的顶点坐标是()A.(﹣2,3) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)12.下列各点在抛物线上的是()A. B. C. D.二、填空题(每题4分,共24分)13.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.14.某种植基地2016年蔬菜产量为100吨,2018年蔬菜实际产量为121吨,则蔬菜产量的年平均增长率为____.15.如图,是由10个小正三角形构造成的网格图(每个小正三角形的边长均为1),则sin(α+β)=__.16.如图,,如果,那么_________________.17.已知一元二次方程的一个根为1,则__________.18.如图,直线y=-x+b与双曲线分别相交于点A,B,C,D,已知点A的坐标为(-1,4),且AB:CD=5:2,则m=_________.三、解答题(共78分)19.(8分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.20.(8分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.21.(8分)如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.(1)求A、B两点的坐标及二次函数解析式;(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.22.(10分)如图,已知∠BAC=30°,把△ABC绕着点A顺时针旋转到△ADE的位置,使得点D,A,C在同一直线上.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状;(3)求∠AEC的度数.23.(10分)如图,抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)如图1,求△BCD的面积;(2)如图2,P是抛物线BD段上一动点,连接CP并延长交x轴于E,连接BD交PC于F,当△CDF的面积与△BEF的面积相等时,求点E和点P的坐标.24.(10分)如图,四边形是平行四边形,分别是的平分线,且与对角线分别相交于点.(1)求证:;(2)连结,判断四边形是否是平行四边形,说明理由.25.(12分)已知关于的一元二次方程有两个不相等的实数根,.(1)求的最小整数值;(2)当时,求的值.26.如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).(1)求点B的坐标;(2)已知,C为抛物线与y轴的交点.①若点P在抛物线上,且,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
参考答案一、选择题(每题4分,共48分)1、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【详解】∵一元二次方程mx1+mx﹣=0有两个相等实数根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.2、A【解析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出周长之间的关系;【详解】设此圆的半径为R,
则它的内接正方形的边长为,
它的内接正六边形的边长为R,
内接正方形和外切正六边形的边长比为R:R=:1.正方形与正六边形的周长之比=:6=
故答案选:A;【点睛】考查了正多边形和圆,解决圆的相关问题一定要结合图形,掌握基本的图形变换.找出内接正方形与内接正六边形的边长关系,是解决问题的关键.3、C【分析】根据三角形中位线定理可得DE=BC,代入数据可得答案.【详解】解:∵线段AB,AC的中点为D,E,
∴DE=BC,
∵DE=20米,
∴BC=40米,
故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.4、C【分析】根据圆内接四边形对角互补的性质即可求得.【详解】∵在圆内接四边形ABCD中,:=3:2,∴∠B:∠D=3:2,∵∠B+∠D=180°,∴∠B=180°×=.故选C.【点睛】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.5、D【分析】作出三角形的高,利用直角三角形的性质及勾股定理可得高,利用三角形的面积=底×高,把相关数值代入即可求解.【详解】解:作出BC边上的高AD.∵△ABC是等边三角形,边长为x,∴CD=x,∴高为h=x,∴y=x×h=.故选:D.【点睛】此题主要考查了三角形的面积的求法,找到等边三角形一边上的高是难点,求出三角形的高是解决问题的关键.6、C【分析】根据概率公式分别求出各选项事件的概率,即可判断.【详解】解:若不考虑硬币竖起的情况,A.正面向上概率为1÷2=;B.正面不向上的概率为1÷2=;C.正面或反面向上的概率为2÷2=1;D.正面和反面都不向上的概率为0÷2=0∵1>>0∴正面或反面向上的概率最大故选C.【点睛】此题考查的是比较几个事件发生的可能性的大小,掌握概率公式是解决此题的关键.7、D【解析】试题分析:选项A,袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,本选项错误;选项B,天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,本选项错误;选项C,某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,也可能不中奖,本选项错误;选项D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,本选项正确.故答案选D.考点:概率的意义8、D【分析】A.根据对称轴为时,求得顶点对应的y的值即可判断;B.根据当时,函数值小于0即可判断;C.根据抛物线与轴的交点坐标即可判断.D.根据抛物线与直线的交点情况即可判断.【详解】A.∵当时,,根据图象可知,,正确.不符合题意;B.∵当时,,根据图象可知,,正确.不符合题意;C.∵抛物线是轴对称图形,对称轴是直线,点,所以与轴的另一个交点的坐标为,根据图象可知:当时,,正确.不符合题意;D.根据图象可知:抛物线与直线有两个交点,∴关于的方程有两个不相等的实数根,本选项错误,符合题意.故选:D.【点睛】本题考查了二次函数与系数的关系、根的判别式、抛物线与x轴的交点,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键.9、C【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】解:A.直角三角形不是中心对称图象,故本选项错误;B.等边三角形不是中心对称图象,故本选项错误;C.平行四边形是中心对称图象,故本选项正确;D.正五边形不是中心对称图象,故本选项错误.故选:C.【点睛】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.10、B【解析】根据向量的运算法则可得:=,故选B.11、C【分析】根据二次函数的性质直接求解.【详解】解:二次函数y=(x+2)2-3的顶点坐标是(-2,-3).
故选:C.【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;抛物线的顶点式为y=a(x-)2+,对称轴为直线x=-,顶点坐标为(-,);抛物线与y轴的交点坐标为(0,c).12、A【分析】确定点是否在抛物线上,分别把x=0,3,-2,代入中计算出对应的函数值,再进行判断即可.【详解】解:当时,,当时,,当时,,当时,,所以点在抛物线上.故选:.二、填空题(每题4分,共24分)13、相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离14、10%【分析】2016年到2018年是2年的时间,设年增长率为x,可列式100×=121,解出x即可.【详解】设平均年增长率为x,可列方程100×=121解得x=10%故本题答案应填10%.【点睛】本题考查了一元二次函数的应用问题.15、.【分析】连接BC,构造直角三角形ABC,由正三角形及菱形的对角线平分对角的性质,得出∠BCD=α=30°,∠ABC=90°,从而α+β=∠ACB,分别求出△ABC的边长,【详解】如图,连接BC,∵上图是由10个小正三角形构造成的网格图,∴任意相邻两个小正三角形都组成一个菱形,∴∠BCD=α=30°,∠ABC=90°,∴α+β=∠ACB,∵每个小正三角形的边长均为1,∴AB=2,在Rt△DBC中,,∴BC=,∴在Rt△ABC中,AC=,∴sin(α+β)=sin∠ACB=,故答案为:.【点睛】本题考查了构造直角三角形求三角函数值,解决本题的关键是要正确作出辅助线,明确正弦函数的定义.16、【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵,∴,即,解得:.故答案为:.【点睛】本题考查的是平行线分线段成比例定理,属于基本题型,熟练掌握该定理是解题关键.17、-4【分析】将x=1代入方程求解即可.【详解】将x=1代入方程得4+a=0,解得a=-4,故答案为:-4.【点睛】此题考查一元二次方程的解,使方程左右两边相等的未知数的值是方程的解,已知方程的解时将解代入方程求参数即可.18、【解析】如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.根据反比例函数y和直线AB组成的图形关于直线y=x对称,求出E、F、C、D的坐标即可.【详解】如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.∵反比例函数y和直线AB组成的图形关于直线y=x对称,A(﹣1,4),∴B(4,﹣1),∴直线AB的解析式为y=﹣x+3,∴E(0,3),F(3,0),∴AB=5,EF=3.∵AB:CD=5:2,∴CD=2,∴CE=DF.设C(x,-x+3),∴CE=,解得:x=(负数舍去),∴x=,-x+3=,∴C(),∴m==.故答案为:.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用轴对称的性质解决问题,属于中考常考题型.三、解答题(共78分)19、(1)证明见解析;(2)AD=2.【解析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.20、树高为6.5米.【分析】根据已知易得出△DEF∽△DCB,利用相似三角形的对应边成比例可得;然后将相关数据代入上式求出BC的长,再结合树高=AC+BC即可得出答案.【详解】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=10m,∴=∴BC=5米,∴AB=AC+BC=1.5+5=6.5米∴树高为6.5米.【点睛】本题的考点是相似三角形的应用.方法是由已知条件得出两个相似三角形,再利用相似三角形的性质解答.21、(1)A(﹣,0),B(,0);抛物线解析式y=x2+x﹣;(2)12;(3)(0,),(0,﹣)【分析】(1)在y=mx2+3mx﹣m中令y=0,解方程求得x的值即可求得A、B的坐标,继而根据已知求出点D的坐标,把点D坐标代入函数解析式y=mx2+3mx﹣m利用待定系数法求得m即可得函数解析式;(2)先求出直线AD解析式,再根据直线BE∥AD,求得直线BE解析式,继而可得点E坐标,如图2,作点P关于AE的对称点P',作点E关于x轴的对称点E',根据对称性可得PQ=P'Q,PE=EP'=P'E',从而有DQ+PQ+PE=DQ+P'Q+P'E',可知当D,Q,E'三点共线时,DQ+PQ+PE值最小,即DQ+PQ+PE最小值为DE',根据D、E'坐标即可求得答案;(3)分情况进行讨论即可得答案.【详解】(1)∵令y=0,∴0=mx2+3mx﹣m,∴x1=,x2=﹣,∴A(﹣,0),B(,0),∴顶点D的横坐标为﹣,∵直线y=﹣x﹣与x轴所成锐角为30°,且D,B关于y=﹣x﹣对称,∴∠DAB=60°,且D点横坐标为﹣,∴D(﹣,﹣3),∴﹣3=m﹣m﹣m,∴m=,∴抛物线解析式y=x2+x﹣;(2)∵A(﹣,0),D(﹣,﹣3),∴直线AD解析式y=﹣x﹣,∵直线BE∥AD,∴直线BE解析式y=﹣x+,∴﹣x﹣=﹣x+,∴x=,∴E(,﹣3),如图2,作点P关于AE的对称点P',作点E关于x轴的对称点E',根据对称性可得PQ=P'Q,PE=EP'=P'E',∴DQ+PQ+PE=DQ+P'Q+P'E',∴当D,Q,E'三点共线时,DQ+PQ+PE值最小,即DQ+PQ+PE最小值为DE',∵D(﹣,﹣3),E'(,3),∴DE'=12,∴DQ+PQ+PE最小值为12;(3)∵抛物线y=(x+)2﹣3图象向右平移个单位,再向上平移3个单位,∴平移后解析式y=x2,当x=3时,y=3,∴M(3,3),如图3若以AM为直角边,点M是直角顶点,在AM上方作等腰直角△AME,则∠EAM=45°,直线AE交y轴于F点,作MG⊥x轴,EH⊥MG,则△EHM≌△AMG,∵A(﹣,0),M(3,3),∴E(3﹣3,3+),∴直线AE解析式:y=x+,∴F(0,),若以AM为直角边,点M是直角顶点,在AM上方作等腰直角△AME,同理可得:F(0,﹣).【点睛】本题考查了待定系数法、轴对称的性质、抛物线的平移、线段和的最小值问题、全等三角形的判定与性质等,综合性较强,有一定的难度,准确添加辅助线、熟练应用相关知识是解题的关键.22、(1)150°;(2)详见解析;(3)15°【分析】(1)根据旋转的性质,利用补角性质即可解题;(2)根据旋转后的对应边相等即可解题;(3)利用外角性质即可解题.【详解】解:(1)∵点D,A,C在同一直线上,∴∠BAD=180°-∠BAC=180°-30°=150°,∴△ABC旋转了150°;(2)根据旋转的性质,可知AC=AE,∴△AEC是等腰三角形;(3)根据旋转的性质可知,∠CAE=∠BAD=150°,AC=AE,∴∠AEC=∠ACE=(180°-∠CAE)÷2=(180°-150°)÷2=15°.【点睛】本题考查了旋转变换的性质,理解旋转三要素:旋转中心、旋转方向、旋转角度的概念、掌握旋转变换的性质是解题的关键.23、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分别求出点C,顶点D,点A,B的坐标,如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,证明△BCD是直角三角形,即可由三角形的面积公式求出其面积;(2)先求出直线BD的解析式,设P(a,a2﹣2a﹣3),用含a的代数式表示出直线PC的解析式,联立两解析式求出含a的代数式的点F的坐标,过点C作x轴的平行线,交BD于点H,则yH=﹣3,由△CDF与△BEF的面积相等,列出方程,求出a的值,即可写出E,P的坐标.【详解】(1)在y=x2﹣2x﹣3中,当x=0时,y=﹣3,∴C(0,﹣3),当x=﹣=1时,y=﹣4,∴顶点D(1,﹣4),当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角形,∴S△BCD=DC•BC=×3=3;(2)设直线BD的解析式为y=kx+b,将B(3,0),D(1,﹣4)代入,得,解得,k=2,b=﹣6,∴yBD=2x﹣6,设P(a,a2﹣2a﹣3),直线PC的解析式为y=mx﹣3,将P(a,a2﹣2a﹣3)代入,得am=a2﹣2a﹣3,∵a≠0,∴解得,m=a﹣2,∴yPC=(a﹣2)x﹣3,当y=0时,x=,∴E(,0),联立,解得,,∴F(,),如图2,过点C作x轴的平行线,交BD于点H,则yH=﹣3,∴H(,﹣3),∴S△CDF=CH•(yF﹣yD),S△BEF=BE•(﹣yF),∴当△CDF与△BEF的面积相等时,CH•(yF﹣yD)=BE•(﹣yF),即×(+4)=(﹣3)(﹣),解得,a1=4(舍去),a2=,∴E(5,0),P(,﹣).【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知二次函数的图像与性质、一次函数的性质及三角形面积的求解.24、(1)见解析;(2)是平行四边形;理由见解析.【分析】(1)根据角平分线的性质先得出∠BEC=∠DFA,然后再证∠ACB=∠CAD,再证出△ABE≌△CDF,从而得出AE=CF;
(2)连接BD交AC于O,则可知OB=OD,OA=OC,又AE=CF,所以OE=OF,然后依据对角线互相平分的四边形是平行四边形即可证明.【详解】(1)证明:四边形是平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国婴幼儿配方油脂市场竞争策略与经营效益预测报告
- 2024-2030年中国太阳能警灯项目可行性研究报告
- 2024-2030年中国天然靛蓝行业前景展望及发展可行性分析报告
- 2024-2030年中国型钢行业运行态势及发展规划研究报告版
- 2024-2030年中国四水过硼酸钠产业未来发展趋势及投资策略分析报告
- 2024-2030年中国商用车传动轴行业供需趋势及投资策略分析报告
- 2024-2030年中国吊索具行业市场供需格局预测及投资策略分析报告
- 2024-2030年中国劳动防护用品行业产销状况及发展前景展望报告
- 2024-2030年中国别墅酒店行业竞争格局及投资经营模式分析报告
- 2024-2030年中国冷冻甜品乳制品和饮料行业市场发展趋势与前景展望战略分析报告
- 《中考试卷分析》课件
- 餐饮服务人员职业道德培训
- LY-T 3332-2022 森林保险查勘定损技术规程
- 外贸业务与国际市场开拓培训
- 学校级绿色教育存在的问题与改革策略
- 广告制作安装质量保证措施
- 聚合物复合材料工艺课件
- 产品市场推广效果报告
- 高校辅导员岗前培训课件
- Java程序设计项目式教程 教案 单元10 Java图形用户界面设计
- 高考复习递推思维方法在物理高考题中的应用
评论
0/150
提交评论