2025届山东省菏泽市单县九年级数学第一学期期末监测试题含解析_第1页
2025届山东省菏泽市单县九年级数学第一学期期末监测试题含解析_第2页
2025届山东省菏泽市单县九年级数学第一学期期末监测试题含解析_第3页
2025届山东省菏泽市单县九年级数学第一学期期末监测试题含解析_第4页
2025届山东省菏泽市单县九年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省菏泽市单县九年级数学第一学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.计算的结果是A.﹣3 B.3 C.﹣9 D.92.把两条宽度都为的纸条交叉重叠放在一起,且它们的交角为,则它们重叠部分(图中阴影部分)的面积为().A. B.C. D.3.如图,⊙O是△ABC的外接圆,连接OC、OB,∠BOC=100°,则∠A的度数为()A.30° B.40° C.50° D.60°4.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m5.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A. B. C. D.6.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是()A. B.C. D.7.有一个矩形苗圃园,其中一边靠墙,另外三边用长为的篱笆围成.已知墙长为若平行于墙的一边长不小于则这个苗圃园面积的最大值和最小值分别为()A. B.C. D.8.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.309.某细胞的直径约为0.0000008米,该直径用科学记数法表示为()A.米 B.米 C.米 D.米10.一元二次方程的一次项系数和常数项依次是()A.和 B.和 C.和 D.和二、填空题(每小题3分,共24分)11.分解因式:=____________.12.如图,,如果,,,那么___________.13.如图,在平面直角坐标系中,点的坐标分别为,以原点为位似中心,把线段放大,点的对应点的坐标为,则点的对应点的坐标为__________.14.抛物线y=3(x+2)2+5的顶点坐标是_____.15.如图,AB为弓形AB的弦,AB=2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____.16.如图,在正方形网格中,每个小正方形的边长都是1,的每个顶点都在格点上,则_____.17.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是___.18.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为.三、解答题(共66分)19.(10分)如图,已知一次函数y1=ax+b的图象与x轴、y轴分别交于点D、C,与反比例函数y2=的图象交于A、B两点,且点A的坐标是(1,3)、点B的坐标是(3,m).(1)求一次函数与反比例函数的解析式;(2)求C、D两点的坐标,并求△AOB的面积;(3)根据图象直接写出:当x在什么取值范围时,y1>y2?20.(6分)我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B出有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,求正方形城池的边长.21.(6分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率.22.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.23.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.24.(8分)我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知的两条弦,则、互为“十字弦”,是的“十字弦”,也是的“十字弦”.(1)若的半径为5,一条弦,则弦的“十字弦”的最大值为______,最小值为______.(2)如图1,若的弦恰好是的直径,弦与相交于,连接,若,,,求证:、互为“十字弦”;(3)如图2,若的半径为5,一条弦,弦是的“十字弦”,连接,若,求弦的长.25.(10分)在平面直角坐标系中,已知抛物线的表达式为:y=﹣x2+bx+c.(1)根据表达式补全表格:抛物线顶点坐标与x轴交点坐标与y轴交点坐标(1,0)(0,-3)(2)在如图的坐标系中画出抛物线,并根据图象直接写出当y随x增大而减小时,自变量x的取值范围.26.(10分)已知矩形中,,,点、分别在边、上,将四边形沿直线翻折,点、的对称点分别记为、.(1)当时,若点恰好落在线段上,求的长;(2)设,若翻折后存在点落在线段上,则的取值范围是______.

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用二次根式的性质进行化简即可.【详解】=|﹣3|=3.故选B.2、A【分析】如图,过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,证明△ABE≌△ADF,从而证明四边形ABCD是菱形,再利用三角函数算出BC的长,最后根据菱形的面积公式算出重叠部分的面积即可.【详解】解:如图所示:过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,

∴∠AEB=∠AFD=90°,

∵AD∥CB,AB∥CD,

∴四边形ABCD是平行四边形,

∵纸条宽度都为1,

∴AE=AF=1,

在△ABE和△ADF中,

∴△ABE≌△ADF(AAS),

∴AB=AD,

∴四边形ABCD是菱形.

∴BC=AB,

∵=sinα,

∴BC=AB=,

∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=.

故选:A.【点睛】本题考查菱形的判定与性质,以及三角函数的应用,关键是证明四边形ABCD是菱形,利用三角函数求出BC的长.3、C【分析】直接根据圆周角定理即可得出结论.【详解】∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC==50°.故选:C.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.4、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.5、B【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】∵a<0,∴抛物线的开口方向向下,故第三个选项错误;∵c<0,∴抛物线与y轴的交点为在y轴的负半轴上,故第一个选项错误;∵a<0、b>0,对称轴为x=>0,∴对称轴在y轴右侧,故第四个选项错误.故选B.6、B【分析】根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.【点睛】本题主要考查了对直线与圆的位置关系的性质,掌握直线与圆的位置关系的性质是解此题的关键.7、C【分析】设垂直于墙面的长为xm,则平行于墙面的长为(20-2x)m,这个苗圃园的面积为ym2,根据二次函数的图象及性质求最值即可.【详解】解:设垂直于墙面的长为xm,则平行于墙面的长为(20-2x)m,这个苗圃园的面积为ym2由题意可得y=x(20-2x)=-2(x-5)2+50,且8≤20-2x≤15解得:2.5≤x≤6∵-2<0,二次函数图象的对称轴为直线x=5∴当x=5时,y取最大值,最大值为50;当x=2.5时,y取最小值,最小值为37.5;故选C.【点睛】此题考查的是二次函数的应用,掌握二次函数的图象及性质是解题关键.8、D【详解】试题解析:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.9、B【分析】根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为且,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:根据科学计数法得:.故选:B.【点睛】本题主要考查科学计数法,熟记科学计数法的一般形式是且是关键,注意负指数幂的书写规则是由原数左边第一个不为零的数字开始数起.10、B【解析】根据一元二次方程的一般形式进行选择.【详解】解:2x2-x=1,

移项得:2x2-x-1=0,

一次项系数是-1,常数项是-1.

故选:B.【点睛】此题主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b分别叫二次项系数,一次项系数.二、填空题(每小题3分,共24分)11、【解析】分析:利用平方差公式直接分解即可求得答案.解答:解:a2-b2=(a+b)(a-b).故答案为(a+b)(a-b).12、1【分析】由于l1∥l2∥l3,根据平行线分线段成比例得到,然后把数值代入求出DF.【详解】解:∵l1∥l2∥l3,

∴,即,

∴DE=1.故答案为:1【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13、【分析】由题意可知:OA=2,AB=1,,△OAB∽△,根据相似三角形的性质列出比例式即可求出,从而求出点的坐标.【详解】由题意可知:OA=2,AB=1,,△OAB∽△∴即解得:∴点的坐标为(4,2)故答案为:.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的对应边成比例是解决此题的关键.14、(﹣2,5)【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.15、【解析】连接OB,OA,过O作,得到,求得,连接IA,IB,根据角平分线的定义得到,,根据三角形的内角和得到,设A,B,I三点所在的圆的圆心为,连接,,得到,根据等腰三角形的性质得到,连接,解直角三角形得到,根据弧长公式即可得到结论.【详解】解:连接OB,OA,过O作,,,在Rt中,,,,,连接IA,IB,点I为的内心,,,,,点P为弧AB上动点,始终等于,点I在以AB为弦,并且所对的圆周角为的一段劣弧上运动,设A,B,I三点所在的圆的圆心为,连接,,则,,,连接,,,,点I移动的路径长故答案为:【点睛】本题考查了三角形的内切圆与内心,解直角三角形,弧长公式以及圆周角定理,根据题意作出辅助线,构造出全等三角形,得出点I在以AB为弦,并且所对的圆周角为的一段劣弧上是解答此题的关键.16、2【分析】如图,取格点E,连接EC.利用勾股定理的逆定理证明∠AEC=90°即可解决问题.【详解】解:如图,取格点E,连接EC.易知AE=,∴AC2=AE2+EC2,∴∠AEC=90°,∴tan∠BAC=.【点睛】本题考查解直角三角形,勾股定理以及逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17、(﹣5,3)【详解】解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).故答案为:(﹣5,3).18、.【解析】试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以阴影部分的面积为为S=--()=.考点:扇形的面积计算.三、解答题(共66分)19、(1)y1=,y1=﹣x+4;(1)4;(3)当x满足1<x<3、x<2时,则y1>y1.【分析】(1)把点A(1,3)代入y1=,求出k,得到反比例函数的解析式;再把B(3,m)代入反比例函数的解析式,求出m,得到点B的坐标,把A、B两点的坐标代入y1=ax+b,利用待定系数法求出一次函数的解析式;

(1)把x=2代入一次函数解析式,求出y1=4,得到C点的坐标,把y1=2代入一次函数解析式,求出x=4,得到D点坐标,再根据S△AOB=S△AOD-S△BOD,列式计算即可;

(3)找出一次函数落在反比例函数图象上方的部分对应的自变量的取值即可.【详解】解:(1)把点A(1,3)代入y1=,则3=,即k=3,故反比例函数的解析式为:y1=.把点B的坐标是(3,m)代入y1=,得:m==1,∴点B的坐标是(3,1).把A(1,3),B(3,1)代入y1=ax+b,得,解得,故一次函数的解析式为:y1=﹣x+4;(1)令x=2,则y1=4;令y1=2,则x=4,∴C(2,4),D(4,2),∴S△AOB=S△AOD﹣S△BOD=×4×3﹣×4×1=4;(3)由图像可知x<2、1<x<3时,一次函数落在反比例函数图象上方,故满足y1>y1条件的自变量的取值范围:1<x<3、x<2.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,难度适中.利用了数形结合思想.20、正方形城池的边长为300步【分析】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例,列出方程,通过解方程即可求出小城的边长.【详解】依题意得AB=30步,CD=750步.设AE为x步,则正方形边长为2x步,根据题意,Rt△ABE∽Rt△CED∴即.解得x1=150,x2=-150(不合题意,舍去),∴2x=300∴正方形城池的边长为300步.【点睛】本题考查相似三角形的应用.21、(1)见解析;(2)【分析】(1)用列表法或画出树状图分析数据、列出可能的情况即可.(2)A、B、D既是轴对称图形,也是中心对称图形,C是轴对称图形,不是中心对称图形.列举出所有情况,让两次摸牌的牌面图形既是中心对称图形又是轴对称图形的情况数除以总情况数即为所求的概率.【详解】(1)列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种.故所求概率是.考点:1.列表法与树状图法;2.轴对称图形;3.中心对称图形.22、(1)证明见解析;(2).【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考点:相似三角形的判定23、⊙O的半径为.【解析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。【详解】解:如图,连接OA.交BC于H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,设⊙O的半径为r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.24、(1)10,6;(2)见解析;(3).【分析】(1)根据“十字弦”定义可得弦的“十字弦”为直径时最大,当CD过A点或B点时最小;(2)根据线段长度得出对应边成比例且有夹角相等,证明△ACH∽△DCA,由其性质得出对应角相等,结合90°的圆周角证出AH⊥CD,根据“十字弦”定义可得;(3)过O作OE⊥AB于点E,作OF⊥CD于点F,利用垂径定理得出OE=3,由正切函数得出AH=DH,设DH=x,在Rt△ODF中,利用线段和差将边长用x表示,根据勾股定理列方程求解.【详解】解:(1)当CD为直径时,CD最大,此时CD=10,∴弦的“十字弦”的最大值为10;当CD过A点时,CD长最小,即AM的长度,过O点作ON⊥AM,垂足为N,作OG⊥AB,垂足为G,则四边形AGON为矩形,∴AN=OG,∵OG⊥AB,AB=8,∴AG=4,∵OA=5,∴由勾股定理得OG=3,∴AN=3,∵ON⊥AM,∴AM=6,即弦的“十字弦”的最小值是6.(2)证明:如图,连接AD,∵,,,∴,∵∠C=∠C,∴△ACH∽△DCA,∴∠CAH=∠D,∵CD是直径,∴∠CAD=90°,∴∠C+∠D=90°,∴∠C+∠CAH=90°,∴∠AHC=90°,∴AH⊥CD,∴、互为“十字弦”.(3)如图,过O作OE⊥AB于点E,作OF⊥CD于点F,连接OA,OD,则四边形OEHF是矩形,∴OE=FH,OF=EH,∴AE=4,∴由勾股定理得OE=3,∴FH=3,∵tan∠ADH=,∴tan60°=,设DH=,则AH=x,∴FD=3+x,OF=HE=4-x,在Rt△ODF中,由勾股定理得,OD2=OF2+FD2,∴(3+x)2+(4-x)2=52,解得,x=,∴FD=,∵OF⊥CD,∴CD=2DF=即CD=【点睛】本题考查圆的相关性质,利用垂径定理,相似三角形等知识是解决圆问题的常用手段,对结合学过的知识和方法的基础上,用新的方法和思路来解决新题型或新定义的能力是解答此题的关键.25、(1)补全表格见解析;(1)图象见解析;当y随x增大而减小时,x的取值范围是x>1.【分析】(1)根据待定系数法,把点(1,0),(0,-3)坐标代入得,则可确定抛物线解析式为,然后把它配成顶点式得到顶点的坐标;再根据对称性求出另一个交点坐标;(1)根据函数解析式和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论