2022-2023学年内蒙古赤峰市数学九年级第一学期期末学业水平测试试题含解析_第1页
2022-2023学年内蒙古赤峰市数学九年级第一学期期末学业水平测试试题含解析_第2页
2022-2023学年内蒙古赤峰市数学九年级第一学期期末学业水平测试试题含解析_第3页
2022-2023学年内蒙古赤峰市数学九年级第一学期期末学业水平测试试题含解析_第4页
2022-2023学年内蒙古赤峰市数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,则1+a+b的值是()A.2017 B.2018 C.2019 D.20202.图2是图1中长方体的三视图,若用表示面积,则()A. B. C. D.3.已知点(x1,y1),(x2,y2)是反比例函数y=图象上的两点,且0<x1<x2,则y1,y2的大小关系是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<04.抛物线的对称轴是()A. B. C. D.5.如图所示的几何体,它的左视图是()A. B. C. D.6.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.求竹竿有多长.设竹竿长尺,则根据题意,可列方程()A. B.C. D.7.如图,点,在双曲线上,且.若的面积为,则().A.7 B. C. D.8.抛物线可由抛物线如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位9.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.710.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A. B. C. D.11.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(

)A.4 B.3 C.2 D.12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.二、填空题(每题4分,共24分)13.用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为__________.14.如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,在点O的异侧将△OAB缩小为原来的,则点B的对应点的坐标是________.15.已知⊙的半径为4,⊙的半径为R,若⊙与⊙相切,且,则R的值为________.16.已知关于x的方程的一个根为2,则这个方程的另一个根是▲.17.若,则的值为_______.18.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.三、解答题(共78分)19.(8分)画出抛物线y=﹣(x﹣1)2+5的图象(要求列表,描点),回答下列问题:(1)写出它的开口方向,对称轴和顶点坐标;(2)当y随x的增大而增大时,写出x的取值范围;(3)若抛物线与x轴的左交点(x1,0)满足n≤x1≤n+1,(n为整数),试写出n的值.20.(8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?21.(8分)不透明的袋中有四个小球,分别标有数字1、2、3、4,它们除了数字外都相同。第一次从中摸出一个小球,记录数字后放回袋中,第二次摇匀后再随机摸出一个小球.(1)求第一次摸出的小球所标数字是偶数的概率;(2)求两次摸出的小球所标数字相同的概率.22.(10分)在平面直角坐标系中,抛物线与轴的两个交点分别是、,为顶点.(1)求、的值和顶点的坐标;(2)在轴上是否存在点,使得是以为斜边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.23.(10分)如图,有三张不透明的卡片,除正面标记有不同数字外,其它均相同.将这三张卡片反面朝上洗匀后,从中随机抽取一张;放回洗匀后,再随机抽取一张.我们把第一次抽取的卡片上标记的数字记作,第二次抽取的卡片上标记的数字记作.(1)写出为负数的概率;(2)求使得一次函数的图象经过第二、三、四象限的概率.(用树状图或列表法求解)24.(10分)已知函数,请根据已学知识探究该函数的图象和性质过程如下:(1)该函数自变量的取值范围为;(2)下表列出y与x的几组对应值,请在平面直角坐标系中描出下列各点,并画出函数图象;x…-12…y…321…(3)结合所画函数图象,解决下列问题:①写出该函数图象的一条性质:;②横、纵坐标均为整数的点称为整点,若直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点,则b的取值范围为.25.(12分)如图,是的直径,直线与相切于点.过点作的垂线,垂足为,线段与相交于点.(1)求证:是的平分线;(2)若,求的长.26.如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据x=-1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,可以得到a+b的值,从而可以求得所求式子的值.【详解】解:∵x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,∴a+b﹣2019=0,∴a+b=2019,∴1+a+b=1+2019=2020,故选:D.【点睛】本题考查一元二次方程的解,解答本题的关键是明确题意,求出所求式子的值.2、A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x1+1x=x(x+1),S左=x1+x=x(x+1),∴俯视图的长为x+1,宽为x+1,则俯视图的面积S俯=(x+1)(x+1)=x1+3x+1.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.3、B【分析】根据反比例函数的系数为5>0,在每一个象限内,y随x的增大而减小的性质进行判断即可.【详解】∵5>0,∴图形位于一、三象限,在每一个象限内,y随x的增大而减小,又∵0<x1<x2,∴0<y2<y1,故选:B.【点睛】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.4、D【解析】根据二次函数的对称轴公式计算即可,其中a为二次项系数,b为一次项系数.【详解】由二次函数的对称轴公式得:故选:D.【点睛】本题考查了二次函数的对称轴公式,熟记公式是解题关键.5、D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6、B【分析】根据题意,门框的长、宽以及竹竿长是直角三角形的三边长,等量关系为:门框长的平方+门框宽的平方=门的对角线长的平方,把相关数值代入即可求解.【详解】解:∵竹竿的长为x尺,横着比门框宽4尺,竖着比门框高2尺.

∴门框的长为(x-2)尺,宽为(x-4)尺,

∴可列方程为(x-4)2+(x-2)2=x2,

故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,得到门框的长,宽,竹竿长是直角三角形的三边长是解决问题的关键.7、A【分析】过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为点C,点D,根据待定系数法求出k的值,设点,利用△AOB的面积=梯形ACDB的面积+△AOC的面积-△BOD的面积=梯形ACDB的面积进行求解即可.【详解】如图所示,过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为点C,点D,由题意知,,设点,∴△AOB的面积=梯形ACDB的面积+△AOC的面积-△BOD的面积=梯形ACDB的面积,∴,解得,或(舍去),经检验,是方程的解,∴,∴,故选A.【点睛】本题考查了利用待定系数法求反比例函数的表达式,反比例函数系数k的几何意义,用点A的坐标表示出△AOB的面积是解题的关键.8、A【分析】先将抛物线化为顶点式,然后按照“左加右减,上加下减”的规律进行求解即可.【详解】因为,所以将抛物线先向左平移3个单位,再向下平移2个单位即可得到抛物线,故选A.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律,熟练掌握“左加右减,上加下减”的规律是解题的关键.9、D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.10、C【解析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【详解】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1,交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO=OB,∴P1C=P1B,∴OP1AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是2.故选C.【点睛】本题考查了切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.11、B【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.12、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.二、填空题(每题4分,共24分)13、【分析】根据已知列出图表,求出所有结果,即可得出概率.【详解】列表得:红黄绿蓝红(红,红)(红,黄)(红,绿)(红,蓝)蓝(蓝,红)(蓝,黄)(蓝,绿)(蓝,蓝)蓝(蓝,红)(蓝,黄)(蓝,绿)(蓝,蓝)所有等可能的情况数有12种,其中配成紫色的情况数有3种,

∴P配成紫色=故答案为:【点睛】此题主要考查了列表法求概率,根据已知列举出所有可能,进而得出配紫成功概率是解题关键.14、(-2,)【分析】平面直角坐标系中,如果位似变换是以原点为位似中心且在点O的异侧,相似比为,那么位似图形对应点的坐标的比等于解答.【详解】以O为位似中心且在点O的异侧,把△OAB缩小为原来的,

则点B的对应点的坐标为,

即,

故答案为:.【点睛】本题考查的是位似变换的性质,平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.15、6或14【解析】⊙O1和⊙O2相切,有两种情况需要考虑:内切和外切.内切时,⊙O2的半径=圆心距+⊙O1的半径;外切时,⊙O2的半径=圆心距-⊙O1的半径.【详解】若⊙与⊙外切,则有4+R=10,解得:R=6;若⊙与⊙内切,则有R-4=10,解得:R=14,故答案为6或14.16、-1.【解析】∵方程的一个根为2,设另一个为a,∴2a=-6,解得:a=-1.17、【解析】根据等式性质,等号两边同时加1即可解题.【详解】解:∵,∴,即.【点睛】本题考查了分式的计算,属于简单题,熟悉分式的性质是解题关键.18、甲【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故答案为甲.【点睛】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题(共78分)19、列表画图见解析;(1)开口向上,对称轴是直线x=1,顶点坐标为(1,5);(2)x<1;(1)n=﹣1【分析】根据二次函数图象的画法,先列表,然后描点、连线即可画出该抛物线的图象;(1)根据画出的抛物线的图象,可以写出它的开口方向,对称轴和顶点坐标;(2)根据函数图象,可以写出当y随x的增大而增大时,x的取值范围;(1)令y=0求出相应的x的值,即可得到x1的值,然后根据n≤x1≤n+1,(n为整数),即可得到n的值.【详解】解:列表:描点、连线(1)由图象可知,该抛物线开口向上,对称轴是直线x=1,顶点坐标为(1,5);(2)由图象可知,当y随x的增大而增大时,x的取值范围是x<1;(1)当y=0时,0=﹣(x﹣1)2+5,解得,,,则该抛物线与x轴的左交点为(+1,0),∵﹣1<+1<﹣2,n≤x1≤n+1,(n为整数),∴n=﹣1.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.20、【解析】本题先利用树状图,求出医院某天出生了3个婴儿的8中等可能性,再求出出现1个男婴、2个女婴有三种,概率为.【详解】解:用树状图来表示出生婴儿的情况,如图所示.在这8种情况中,一男两女的情况有3种,则概率为.【点睛】本题利用树状图比较合适,利用列表不太方便.一般来说求等可能性,只有两个层次,既可以用树状图,又可以用列表;有三个层次时,适宜用树状图求出所有的等可能性.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)(数字是偶数);(2)(数字相同)【分析】(1)利用概率公式求概率即可;(2)先列表,然后根据概率公式计算概率即可.【详解】解:(1)第一次摸出的小球共有4种等可能的结果,其中摸出的小球所标数字是偶数的结果有2种,∴(数字是偶数)=2÷4(2)列表如下:第二次第一次123411,12,13,14,121,22,23,24,231,32,33,34,341,42,43,44,4由表格可知:共有16种等可能的结果,其中两次摸出的小球所标数字相同的可能有4种∴(数字相同)=4÷16【点睛】此题考查的是求概率问题,掌握列表法和概率公式是解决此题的关键.22、(1),,(-1,4);(2)在y轴上存在点D(0,3)或D(0,1),使△ACD是以AC为斜边的直角三角形【分析】(1)把A(-3,0),B(1,0)代入解方程组即可得到结论;

(2)过C作CE⊥y轴于E,根据函数的解析式求得C(-1,4),得到CE=1,OE=4,设,得到,根据相似三角形的性质即可得到结论.【详解】(1)把A(−3,0)、B(1,0)分别代入,,解得:,,则该抛物线的解析式为:,∵,所以顶点的坐标为(,);故答案为:,,顶点的坐标为(,);(2)如图1,过点作⊥轴于点,假设在轴上存在满足条件的点,设(0,),则,∵,∴,,,,由∠90得∠1∠290,又∵∠2∠390,∴∠3∠1,又∵∠CED∠DOA90,∴△∽△,∴,则,变形得,解得,.综合上述:在y轴上存在点(0,3)或(0,1),使△ACD是以AC为斜边的直角三角形.【点睛】本题考查了二次函数综合题,待定系数法求函数的解析式,相似三角形的判定和性质,正确的理解题意是解题的关键.23、(1);(2)【分析】(1)用负数的个数除以数的总数即为所求的概率;

(2)画树状图列举出所有情况,看k<0,b<0的情况占总情况的多少即可.【详解】解:(1)共有3个数,其中负数有2个,那么为负数的概率为(2)画树状图可知,两次抽取卡片试验共有9种不同结果,每种可能性相同“一次函数图象经过第二、三、四象限”等价于“且”抽取卡片满足,有4种情况所以,一次函数图象经过第二、三、四象限的概率是.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.注意过二、三、四象限的一次函数的k为负数,b为负数.24、(1):x>-2;(2)见详解;(1)①当x>-2时,y随x的增加而减小;②2≤b<1.【分析】(1)x+2>0,即可求解;(2)描点画出函数图象即可;(1)①任意写出一条性质即可,故答案不唯一;②如图2,当b=2时,直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点(图中空心点),即可求解【详解】解:(1)x+2>0,解得:x>-2,故答案为:x>-2;(2)描点画出函数图象如下:(1)①当x>-2时,y随x的增加而减小(答案不唯一),故答案为:当x>-2时,y随x的增加而减小(答案不唯一),②如图2,当b=2时,直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点(图中空心点),故2≤b<1,故答案为:2≤b<1.【点睛】本题考查的是一次函数图象与系数的关系,这种探究性题目,通常按照题设的顺序逐次求解,通常比较容易.25、(1)见解析;(2)【分析】(1)连接OC,可证得OC∥AD,根据平行线性质及等腰三角形性质,可得∠DAC=∠CAO,即得AC平分∠DAB;(2)连接,连接交于点,通过构造直角三角形,利用勾股定理和相似三角形求得,再求得,即可求得答案.【详解】(1)证明:如图,连接,∵与相切于点,∴,∵,∴,∴,∴,∴,∵,∴,∴,∴是的平分线;(2)解:如图,连接,连接交于点,∵是的直径,∴,∵,∴,∵,∴,∴,为线段中点,∵,,∴,∴,即:,∴,∵,∴,∴,∵为直径中点,为线段中点,∴.【点睛】本题考查了切线的性质、角平分线的性质、相似三角形的判定、勾股定理、三角形中位线的性质等多方面的知识,是一道综

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论