版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.用配方法将方程变形为,则的值是()A.4 B.5 C.6 D.72.如图,在⊙O中,AB⊥OC,垂足为点D,AB=8,CD=2,若点P是优弧上的任意一点,则sin∠APB=()A. B. C. D.3.如图,抛物线y=﹣(x+m)2+5交x轴于点A,B,将该抛物线向右平移3个单位后,与原抛物线交于点C,则点C的纵坐标为()A. B. C.3 D.4.如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是A.14 B.12 C.9 D.75.如图1,S是矩形ABCD的AD边上一点,点E以每秒kcm的速度沿折线BS-SD-DC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动.已知点F运动到点B时,点E也恰好运动到点C,此时动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为.已知y与t的函数图像如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒;②矩形ABCD的两邻边长为BC=6cm,CD=4cm;③sin∠ABS=;④点E的运动速度为每秒2cm.其中正确的是()A.①②③ B.①③④ C.①②④ D.②③④6.在数学活动课上,张明运用统计方法估计瓶子中的豆子的数量.他先取出粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出粒豆子,发现其中粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为()粒.A. B. C. D.7.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2 B.cm2 C.cm2 D.cm28.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(
)A. B. C. D.9.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c=0有两个相等的实数根.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个10.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.411.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响.在《九章算术》中有很多名题,下面就是其中的一道.原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点.寸,寸,则可得直径的长为()A.13寸 B.26寸C.18寸 D.24寸12.在反比例函数的图象在某象限内,随着的增大而增大,则的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:等待时的频数间乘车等待时间地铁站5≤t≤1010<t≤1515<t≤2020<t≤2525<t≤30合计A5050152148100500B452151674330500据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)14.如图,在正方形和正方形中,点和点的坐标分别为,,则两个正方形的位似中心的坐标是___________.15.如图,在正方形ABCD中,对角线AC、BD交于点O,E是BC的中点,DE交AC于点F,则tan∠BDE=______.16.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______(精确到0.1).投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)0.560.600.520.520.490.510.5017.如图,AB是⊙O的直径,C、D为⊙O上的点,P为圆外一点,PC、PD均与圆相切,设∠A+∠B=130°,∠CPD=β,则β=_____.18.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.三、解答题(共78分)19.(8分)如图,一次函数的图象与反比例函数()的图象相交于点和点,点在第四象限,轴,.(1)求的值;(2)求的值.20.(8分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)21.(8分)已知△ABC在平面直角坐标系中的位置如图所示.请解答:(1)点A、C的坐标分别是、;(2)画出△ABC绕点A按逆时针方向旋转90°后的△AB'C';(3)在(2)的条件下,求点C旋转到点C'所经过的路线长(结果保留π).22.(10分)如图所示,是某路灯在铅垂面内的示意图,灯柱的高为10米,灯柱与灯杆的夹角为.路灯采用锥形灯罩,在地面上的照射区域的长为13.3米,从,两处测得路灯的仰角分别为和,且.求灯杆的长度.23.(10分)已知关于x的一元二次方程x2﹣4x+3m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.24.(10分)在平面直角坐标系xOy中,已知抛物线,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)直线BC平行于x轴,交这条抛物线于B、C两点(点B在点C左侧),且,求点B坐标.25.(12分)我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=,AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.26.如图,已知抛物线经过点A(1,0)和B(0,3),其顶点为D.设P为该抛物线上一点,且位于抛物线对称轴右侧,作PH⊥对称轴,垂足为H,若△DPH与△AOB相似(1)求抛物线的解析式(2)求点P的坐标
参考答案一、选择题(每题4分,共48分)1、B【分析】将方程用配方法变形,即可得出m的值.【详解】解:,配方得:,即,则m=5.故选B.【点睛】本题考查了配方法,解题的关键是利用完全平方公式对方程进行变形.2、B【分析】如图,连接OA,OB.设OA=OB=x.利用勾股定理构建方程求出x,再证明∠APB=∠AOD即可解决问题.【详解】如图,连接OA,OB.设OA=OB=x.∵OC⊥AB,∴AD=DB=4,在Rt△AOD中,则有x2=42+(x﹣2)2,∴x=5,∵OA=OB,OD⊥AB,∴∠AOD=∠BOD,∵∠APB=∠AOB=∠AOD,∴sin∠APB=sin∠AOD==,故选:B.【点睛】考查了圆周角定理和解直角三角形等知识,解题的关键是熟练灵活运用其相关知识.3、B【分析】将抛物线y=﹣(x+m)2+5向右平移3个单位后得到y=﹣(x+m﹣3)2+5,然后联立组成方程组求解即可.【详解】解:将抛物线y=﹣(x+m)2+5向右平移3个单位后得到y=﹣(x+m﹣3)2+5,根据题意得:,解得:,∴交点C的坐标为(,),故选:B.【点睛】考查了抛物线与坐标轴的交点坐标等知识,解题的关键是了解抛物线平移规律,并利用平移规律确定平移后的函数的解析式.4、D【分析】根据切线长定理,可以证明圆的外切四边形的对边和相等,由此即可解决问题.【详解】∵AB、BC、CD、DA都是⊙O的切线,∴可以假设切点分别为E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故选D.【点睛】本题考查切线的性质、切线长定理等知识,解题的关键是证明圆的外切四边形的对边和相等,属于中考常考题型.5、C【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设,,由函数图像利用△EBF面积列出方程组即可解决问题.③由,,得,设,,在中,由列出方程求出,即可判断.④求出即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点运动到点时用了2.5秒,运动到点时共用了4秒.故①正确.设,,由题意,解得,所以,,故②正确,,,,设,,在中,,,解得或(舍,,,,故③错误,,,,故④正确,故选:C.【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.6、B【解析】设瓶子中有豆子x粒,根据取出100粒刚好有记号的8粒列出算式,再进行计算即可.【详解】设瓶子中有豆子粒豆子,根据题意得:,解得:,经检验:是原分式方程的解,答:估计瓶子中豆子的数量约为粒.故选:.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.7、C【解析】试题解析:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6-2x,∴纸盒侧面积=3x(6-2x)=-6x2+18x,=-6(x-)2+,∴当x=时,纸盒侧面积最大为.故选C.考点:1.二次函数的应用;2.展开图折叠成几何体;3.等边三角形的性质.8、D【解析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为==.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9、B【分析】先从二次函数图像获取信息,运用二次函数的性质一—判断即可.【详解】解:∵二次函数与x轴有两个交点,∴b2-4ac>0,故①错误;∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,且抛物线开口向下,∴当x=1时,有y=a+b+c<0,故②正确;∵函数图像的顶点为(-1,2)∴a-b+c=2,又∵由函数的对称轴为x=-1,∴=-1,即b=2a∴a-b+c=a-2a+c=c-a=2,故③正确;由①得b2-4ac>0,则ax2+bx+c=0有两个不等的实数根,故④错误;综上,正确的有两个.故选:B.【点睛】本题考查了二次函数的图像与系数的关系,从二次函数图像上获取有用信息和灵活运用数形结合思想是解答本题的关键.10、B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.11、B【分析】根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长.【详解】连接OA,由垂径定理可知,点E是弦AB的中点,设半径为r,由勾股定理得,即解得:r=13所以CD=2r=26,即圆的直径为26,故选B.【点睛】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.12、C【分析】由于反比例函数的图象在某象限内随着的增大而增大,则满足,再解不等式求出的取值范围即可.【详解】∵反比例函数的图象在某象限内,随着的增大而增大∴解得:故选:C.【点睛】本题考查了反比例函数的图象和性质,熟练掌握图象在各象限的变化情况跟系数之间的关系是关键.二、填空题(每题4分,共24分)13、B【分析】用“用时不超过15分钟”的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数,再进行比较即可得出答案.【详解】∵在A地铁站“乘车等待时间不超过15分钟有50+50=100人,∴在A地铁站“乘车等待时间不超过15分钟”的概率为=,∵A线路不超过20分钟的有50+50+152=252人,B线路不超过20分钟的有45+215+167=427人,∴选择B线路,故答案为:,B.【点睛】此题考查了用频率估计概率的知识,能够读懂图是解答本题的关键,难度不大;用到的知识点为:概率=所求情况数与总情况数之比.14、或【分析】根据位似变换中对应点的坐标的变化规律,分两种情况:一种是当点E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.【详解】∵正方形和正方形中,点和点的坐标分别为,∴(1)当点E和C是对应顶点,G和A是对应顶点,位似中心就是EC与AG的交点.设AG所在的直线的解析式为解得∴AG所在的直线的解析式为当时,,所以EC与AG的交点为(2)A和E是对应顶点,C和G是对应顶点.,则位似中心就是AE与CG的交点设AE所在的直线的解析式为解得∴AE所在的直线的解析式为设CG所在的直线的解析式为解得∴AG所在的直线的解析式为联立解得∴AE与CG的交点为综上所述,两个正方形的位似中心的坐标是或故答案为或【点睛】本题主要考查位似图形,涉及了待定系数法求函数解析,求位似中心,正确分情况讨论是解题的关键.15、【分析】设AD=DC=a,根据勾股定理求出AC,易证△AFD∽△CFE,根据相似三角形的性质,可得:=2,进而求得CF,OF的长,由锐角的正切三角函数定义,即可求解.【详解】∵四边形ABCD是正方形,∴∠ADC=90°,AC⊥BD,设AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中点,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案为:.【点睛】本题主要考查相似三角形的判定和性质定理以及正切三角函数的定义,根据题意,设AD=DC=a,表示出OF,OD的长度,是解题的关键.16、0.1【解析】利用频率的计算公式进行计算即可.【详解】解:由题意得,这名球员投篮的次数为1110次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.1.故答案为0.1.【点睛】本题考查利用频率估计概率,难度不大.17、100°【分析】连结OC,OD,则∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根据OB=OC,OD=OA,可得∠BOC=180°−2∠B,∠AOD=180°−2∠A,则可得出与β的关系式.进而可求出β的度数.【详解】连结OC,OD,∵PC、PD均与圆相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴∠CPD=100°,故答案为:100°.【点睛】本题利用了切线的性质,圆周角定理,四边形的内角和为360度求解,解题的关键是熟练掌握切线的性质.18、15π【解析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线l=,∴S侧=×2πr×5=×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.三、解答题(共78分)19、(1)2;(2)【分析】(1)根据点在一次函数的图象上,即可得到,进而得到k的值;(2)设交轴于点,交轴于点,得,,易证∽,进而即可得到答案.【详解】(1)依题意得:,∵在的图象上,∴;(2)设交轴于点,交轴于点,在中,令得,,∴E(0,-2),∵,∴,,∵,,∴∽,∴.【点睛】本题主要考查一次函数和反比例函数以及相似三角形的综合,掌握相似三角形的判定和性质定理,是解题的关键.20、(1)①105°,②见解析;(2)【分析】(1)①解直角三角形求出∠A′CD即可解决问题,②连接A′F,设EF交CA′于点O,在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解决问题.【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′CF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴PA+PF的最小值为.【点睛】本题属于四边形综合题,考查旋转变换相关,全等三角形的判定和性质,相似三角形的判定和性质以及三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题,难度较大.21、(1)(1,4);(5,2);(2)作图见解析;(3).【分析】(1)根据图可得,点A坐标为(1,4);点C坐标为(5,2);(2)画出△ABC绕点A按逆时针方向旋转90°后的△AB′C′;(3)在(2)的条件下,先求出AC的长,再求点C旋转到点C′所经过的路线长即可;【详解】解:(1)点A坐标为(1,4);点C坐标为(5,2).故答案为:(1,4);(5,2);(2)如图所示,△AB'C'即为所求;(3)∵点A坐标为(1,4);点C坐标为(5,2),∴,∴点C旋转到C′所经过的路线长;【点睛】本题主要考查了作图-旋转变换,轨迹,掌握作图-旋转变换是解题的关键.22、2.8米【分析】过点作,交于点,过点作,交于点,则米.设.根据正切函数关系得,可进一步求解.【详解】解:由题意得,.过点作,交于点,过点作,交于点,则米.设.,.在中,,.,..(米).,.(米).答:灯杆的长度为2.8米.【点睛】考核知识点:解直角三角形应用.构造直角三角形,利用直角三角形性质求解是关键.23、(2)m<2;(2)x2=2+,x2=2-.【解析】(2)由方程有两个不相等的实数根知△>0,列不等式求解可得;(2)求出m的值,解方程即可解答.【详解】(2)∵方程有两个不相等的实数根,∴△=42﹣4(3m﹣2)=24﹣22m>0,解得:m<2.(2)∵m为正整数,∴m=2.∴原方程为x2﹣4x+2=0解这个方程得:x2=2+,x2=2-.【点睛】考查了根的判别式,熟练掌握方程的根的情况与判别式的值间的关系是解题的关键.24、(1)开口方向向下,点A的坐标是,在对称轴直线左侧部分是上升的,右侧部分是下降的;(2)点B的坐标为【分析】(1)先化为顶点式,然后由二次函数的性质可求解;(2)如图,设直线与对称轴交于点,则,设线段的长为,则,可求点坐标,代入解析式可求的值,即可求点坐标.【详解】解:(1)抛物线的开口方向向下,顶点的坐标是,抛物线的变化情况是:在对称轴直线左侧部分是上升的,右侧部分是下降的;(2)如图,设直线与对称轴交于点,则.设线段的长为,则,点的坐标可表示为,代入,得.解得(舍,,点的坐标为.【点睛】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用参数求点坐标是本题的关键.25、(1)是,理由见解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依据边长AC=,AB=4,D是边AB的中点,得到AC2=,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D是△ABC边AB上的“理想点”,理由:∵AB=4,点D是△ABC的边AB的中点,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC边AB上的“理想点”.(2)如图②,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中民族大团结课件
- 课件代做教学课件
- 怎样做班会教学课件教学课件教学
- 硬皮病病因介绍
- 《谜面衣锦还乡》课件
- 智能制造生产线技术及应用 教案 4-2 工业机器人示教与操作
- 《数码单反培训讲义》课件
- 热带性肺嗜酸性粒细胞浸润症病因介绍
- 淋巴细胞性间质性肺炎病因介绍
- 开题报告:中国共产党百年教育方针研究
- 回弹法检测烧结普通砖抗压强度计算表JCT7961999及DGTJ088042005
- 锯骨机说明书-中文
- 四年级上册美术课件第6课 汉字变成画|沪教版
- 安全生产资金投入及安全生产费用的提取、管理和使用制度(样例5)
- 高速公路收费员考试复习资料全
- 黄淮海平原的盐碱地
- 生物质在炼铁中的应用
- 食品安全基本知识明白纸
- 化学高考说题大赛
- 舞台机械系统工程栅顶钢结构施工方案
- 蔬菜采购验收标准
评论
0/150
提交评论