版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数及其表示高考数学一轮复习1.函数与映射的概念2.函数的有关概念3.分段函数教材研读考点一函数的定义域考点二求函数的解析式考点三分段函数考点突破1.函数与映射的概念教材研读2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的⑦
定义域
;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的⑧
值域
.(2)函数的三要素:⑨
定义域
、值域和对应关系.(3)相等函数:如果两个函数的⑩
定义域
相同,且
对应关系
完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法:
解析法
、图象法、列表法.▶提醒判断两个函数是否相同,抓住两点:①定义域是否相同;②对应
关系是否相同,其中解析式可以化简,但要注意化简过程的等价性.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的
对应关系
,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒一个分段函数的解析式要把每一段写在一个大括号内,各段函
数的定义域不可以相交.知识拓展1.常见的函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域为R.(4)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(5)y=tanx的定义域为
.(6)函数f(x)=x0的定义域为{x|x∈R,且x≠0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为
,当a<0时,值域为
.(3)y=
(k≠0)的值域是{y|y≠0}.(4)y=ax(a>0且a≠1)的值域是(0,+∞).(5)y=logax(a>0且a≠1)的值域是R.1.判断正误(正确的打“√”,错误的打“✕”).(1)函数y=f(x)的图象与直线x=a最多有2个交点.
(✕)(2)函数f(x)=x2-2x与g(t)=t2-2t是同一函数.
(√)(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.(✕)(4)分段函数是由两个或几个函数组成的.
(✕)(5)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并
集.
(√)
答案(1)✕(2)√(3)✕(4)✕(5)√2.下列图象中不能作为函数图象的是
(B)答案
B
3.下面各组函数中为相等函数的是
(B)A.f(x)=
,g(x)=x-1B.f(x)=x-1,g(t)=t-1C.f(x)=
,g(x)=
·
D.f(x)=x,g(x)=
答案
B若两个函数为相等函数,需它们的定义域、对应关系都相
同.对于选项A:因为f(x)=
,g(x)=x-1的定义域都为R,但函数f(x)=|x-1|,所以它们的对应关系不同,排除A;对于选项C:因为f(x)=
,g(x)=
·
的定义域分别为(-∞,-1]∪[1,+∞),[1,+∞),定义域不同,排除C;对于选项D:因为f(x)=x,g(x)=
的定义域分别为R,{x|x≠0},定义域不同,排除D;对于选项B:因为f(x)=x-1,g(t)=t-1的定义域都为R,对应关系也
相同,所以它们是相等函数,选B.4.函数f(x)=
+
的定义域为
(C)A.[0,2)
B.(2,+∞)C.[0,2)∪(2,+∞)
D.(-∞,2)∪(2,+∞)答案
C由题意得
解得x≥0且x≠2.所以函数的定义域为[0,2)∪(2,+∞).
5.已知函数f(x)=x|x|,若f(x0)=4,则x0的值为
.答案2解析当x≥0时,f(x)=x2,则f(x0)=4,即
=4,解得x0=2,当x<0时,f(x)=-x2,则f(x0)=4,即-
=4,无解,所以x0=2.6.设函数f(x)=
则f(f(3))=
.答案
解析由题意知f(3)=
,f
=
+1=
,所以f(f(3))=f
=
.命题方向一求函数的定义域典例1(1)函数f(x)=
+lg(6-3x)的定义域为
(C)A.(-∞,2)
B.(2,+∞)C.[-1,2)
D.[-1,2]平均速度和瞬时速度
考点突破
C.
D.[-5,5](2)已知函数y=f(x)的定义域是[-2,3],则y=f(2x-1)的定义域是
(C)A.
B.[-1,4]
答案(1)C(2)C解析(1)要使函数f(x)=
+lg(6-3x)有意义,则
即-1≤x<2.故函数y=f(x)的定义域为[-1,2).(2)∵函数y=f(x)的定义域为[-2,3],∴-2≤2x-1≤3,即-
≤x≤2,即函数y=f(2x-1)的定义域为
.◆探究1
(变条件)本例(2)中,若y=f(2x-1)的定义域为[-2,3],如何求y=f(x)
的定义域?解析∵y=f(2x-1)的定义域为[-2,3],∴-5≤2x-1≤5,∴函数y=f(x)的定义域为[-5,5].◆探究2
(变条件)本例(2)中,若y=f(2x-1)的定义域为[-2,3],则y=f(3x+1)
的定义域是什么?解析∵y=f(2x-1)的定义域为[-2,3],∴-5≤2x-1≤5,∴-5≤3x+1≤5,即-2≤x≤
.∴函数y=f(3x+1)的定义域为
.命题方向二已知函数的定义域求参数典例2(1)若函数y=
的定义域为R,则实数m的取值范围是
(D)A.
B.
C.
D.
(2)若函数f(x)=
的定义域为{x|1≤x≤2},则a+b的值为
.
答案(1)D(2)-
解析(1)要使函数的定义域为R,则mx2+4mx+3≠0恒成立,①当m=0时,显然满足条件;②当m≠0时,由Δ=(4m)2-4m×3<0,得0<m<
,由①②得0≤m<
.(2)函数f(x)=
的定义域是不等式ax2+abx+b≥0的解集.由题意知不等式ax2+abx+b≥0的解集为{x|1≤x≤2},所以
解得
所以a+b=-
-3=-
.规律总结函数定义域的求解策略(1)求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式
(组)取交集时可借助数轴,要特别注意端点值的取舍.(2)求函数y=f(g(x))的定义域:若y=f(x)的定义域为(a,b),则解不等式a<g(x)<b即可求出y=f(g(x))的定义域;若y=f(g(x))的定义域为(a,b),则求出g(x)在(a,b)上的值域即得f(x)的定义域.
(3)已知函数的定义域求参数范围,可将问题化成含参的不等式(组)问题,然后求解.▶提醒(1)求函数定义域时,先不要化简函数解析式;(2)求出定义域后,一定要将其写成集合或区间的形式.1-1函数f(x)=
+lg
的定义域为
(C)A.(2,3)
B.(2,4]C.(2,3)∪(3,4]
D.(-1,3)∪(3,6]答案
C要使函数有意义,需满足
即
解得2<x<3或3<x≤4,故选C.
1-2已知函数y=f(x)的定义域为(-1,1),则函数g(x)=f
+f(x-1)的定义域为
(C)A.(-2,0)
B.(-2,2)C.(0,2)
D.
答案
C由题意得
∴
∴0<x<2,∴函数g(x)=f
+f(x-1)的定义域为(0,2),故选C.
1-3若函数y=
的定义域为R,则实数a的取值范围是
.答案
解析由题意得ax2-4ax+2>0恒成立,则a=0或
解得0≤a<
.典例3(1)已知f
=x2+
,求f(x)的解析式.(2)已知f
=lgx,求f(x)的解析式.(3)已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1.求f(x)的解析式.(4)已知函数f(x)满足f(-x)+2f(x)=2x,求f(x)的解析式.求函数的解析式解析(1)(配凑法)由于f
=x2+
=
-2,所以f(x)=x2-2,x≥2或x≤-2,故f(x)的解析式是f(x)=x2-2,x≥2或x≤-2.(2)(换元法)令
+1=t得x=
,代入得f(t)=lg
.又x>0,所以t>1,故f(x)的解析式是f(x)=lg
,x>1.(3)(待定系数法)设f(x)=ax2+bx+c(a≠0),由f(0)=0,知c=0,则f(x)=ax2+bx,又由f(x+1)=f(x)+x+1.得a(x+1)2+b(x+1)=ax2+bx+x+1,即ax2+(2a+b)x+a+b=ax2+(b+1)x+1.所以
解得a=b=
.所以f(x)=
x2+
x.(4)(解方程组法)由f(-x)+2f(x)=2x,①得f(x)+2f(-x)=2-x,②①×2-②,得3f(x)=2x+1-2-x,即f(x)=
.所以f(x)的解析式是f(x)=
.方法技巧求函数解析式的常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的式子,然后以x替代g(x),即得f(x)的解析式.(2)换元法:已知函数f(g(x))的解析式,求f(x)的解析式时可用换元法,即令g(x)=t,从中解出x,代入已知解析式进行换元,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数),则可用待定系数法.(4)解方程组法:已知关于f(x)与f
或f(-x)的等式,可根据已知条件再构造出等式组成方程组,通过解方程组求出f(x)的解析式.2-1已知y=f(x)是二次函数,若方程f(x)=0有两个相等实根,且f'(x)=2x+
2,求f(x)的解析式.解析设f(x)=ax2+bx+c(a≠0),则f'(x)=2ax+b=2x+2,所以a=1,b=2,则f(x)=x2+2x+c.因为方程f(x)=0有两个相等实根,所以Δ=4-4c=0,解得c=1,故f(x)=x2+2x+1.命题方向一求分段函数的函数值典例4(1)若函数f(x)=
则f(-2)+f(log212)=
(C)A.3
B.6
C.9
D.12(2)已知f(x)=
则f(7)=
.分段函数
答案(1)C(2)6解析(1)∵-2<1,∴f(-2)=1+log2[2-(-2)]=3;∵log212>1,∴f(log212)=
=
=6,∴f(-2)+f(log212)=9.(2)∵7<9,∴f(7)=f(f(7+4))=f(f(11))=f(11-3)=f(8).又∵8<9,∴f(8)=f(f(12))=f(9)=9-3=6,即f(7)=6.命题方向二与分段函数有关的不等式问题典例5
设函数f(x)=
则满足f(x+1)<f(2x)的x的取值范围是(D)A.(-∞,-1]
B.(0,+∞)C.(-1,0)
D.(-∞,0)
答案
D解析本题主要考查分段函数及不等式的解法.函数f(x)=
的图象如图所示:
由f(x+1)<f(2x)得
得
∴x<0,故选D.命题方向三求参数的值或取值范围问题典例6(1)已知函数f(x)=
若f(a)+f(1)=0,则实数a的值为
.(2)设f(x)=
若f(a)=f(a+1),则f
=
.
答案(1)-3(2)6解析(1)当a>0时,由f(a)+f(1)=0得2a+2=0,无实数解;当a≤0时,由f(a)+f(1)=0得a+1+2=0,解得a=-3,满足条件,故a=-3.(2)解法一:当0<a<1时,a+1>1,所以f(a)=
,f(a+1)=2(a+1-1)=2a.由f(a)=f(a+1)得
=2a,所以a=
.此时f
=f(4)=2×(4-1)=6.当a≥1时,a+1>1,所以f(a)=2(a-1),f(a+1)=2(a+1-1)=2a,由f(a)=f(a+1)得2(a-1)=2a,无解.综上,f
=6.解法二:因为当0<x<1时,f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装饰材料租赁委托合同
- 2024年企业内部食堂委托经营服务协议书3篇
- 仓库玻璃防火墙施工合同
- 办公楼新风系统升级改造合同
- 2024年度教育培训合同:培训内容与要求3篇
- 摆手舞课程设计
- 输电线路工程委托施工合同
- 房屋课程设计别墅
- 农村道路重建协议
- 风力发电堡坎施工合同协议
- 有机波谱分析考试题库及答案1
- 导游考试指南:一个月过北京导游考试
- 基于分形结构的多频与宽带天线技术研究
- 办公楼VRV多联空调与中央空调系统方案比较
- 人间生活-中国部分+课件高中美术湘美版(2019)美术鉴赏1
- YY/T 1771-2021弯曲-自由恢复法测试镍钛形状记忆合金相变温度
- JJF 1874-2020(自动)核酸提取仪校准规范
- GB/T 7378-2012表面活性剂碱度的测定滴定法
- GB/T 37762-2019同步调相机组保护装置通用技术条件
- GB/T 36961-2018超高强钢热冲压工艺通用技术
- GB/T 33609-2017软质泡沫聚合材料滞后损失试验方法
评论
0/150
提交评论