版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学解题思想方法技巧
Theinformationthatisworthhaving
Itcomesfromthegenerallearningaccumulationsummary
Theremustbeaproblem
Pleasebecritical!
The34thparametertoopenthedoorThetwosideshumility
lowmeterofinterpretations
parameter
Asthenameimplies
Itisareferencenumber
Forthemainvariablereference.So
Theparameteristothepivotentry
It'sakindofrelationship
Heisthemainservice
Acceptoryuanreuse.
Intheprocessofmathematics
Goingto
Bytheparametersingleadingroleplayscenarioisabnormal.
interestingly
Whatisthe''parameter
Thequestionofwhotochooseisthefirstquestionofsolving
theproblem
Youhavetwooptions
Oneisthattheparametersstandinfrontofthem
Decidedbyyou;Thesecondisthattheparameterisnotatall
Wantyoutobe“outofthinair.”
Lowtypicaldemonstration
(1)P,Q,MandNareallontheellipsex2+=1
FisthefocalpointonthepositiveaxisoftheY-axis
Knownandline
Andthe1ine
,and=0,
FortheareaofthequadrilateralPMQNminimumandmaximum.
Thequadrilateral"no"areaformula
Soit'shardtouseacertainlengthasaparameter
Createfunctionalarea.
Fortunately,
Ithastwoverticaldiagonallines,PQandMN
Sothequadrangleareacanberepresentedbytheirproduct
However,
Theyhavetofindrelationshipswiththeknownellipses
Youalsoneedaparameterk
AndfindthePQ
MNdependenceonktype.Thisis“false”.
[answer]thepicture
BytheconditionknownasMNandPQ
It'stwostringsofanellipse
IntersectatthefocalpointF(0
1)
AndPQMNcoming
ThereisatleastoneinlinePQandNM
Thereistheslope
MightaswellsetPQslopefork.
Thereisnokintheproblemset
Sothere'sa"nomiddleclass"parameter.
Weseeitasaresult
Isthatit
Notonlycanwesay|PQ|=fl(k)
Canalsosaid|MN|=f2(k).example1answerkeyfigure
AndthenwehavePQoverFof0
1)
SothePQequationisy=kx+1
Youplugthisintotheellipticequation(2+k2)x2+2kx-
1=0
Let,ssaythatthecoordinatesofPandQareequaltoxl
Yl)
(x2
Y2)
The
XI=
Thus|PQ|=2(xl,x2)2+2=(yl,y2),i.e.|PQ|=.
[insertlanguage]nomatterintheellipticalequation
OrP
Q
M
InthecoordinatesofN
X,yistherightpivotentry.Thisisthenewfunction
relationshipPQ=fl(k)=signthemainbintranslocation
Theproblemhasbeenturned.
(1)whenkisnotequalto0
TheslopeofMNfor-
Sameasabovecanpush
|MN|=,
SothequadrangleS=|PQ,||MN|=.
Makeu=k2+
ToS=.
Becauseu=k2+2orhigher
Whenk=+1
U=2
S=
AndSisafunctionofuasafunctionofthevariable
so
Sorless<2.
Theaboveisthebackboneofthesolution
Thefollowingk=0
It'sjustasmallsupplement
Inthebeautyofperfection
Onthegroundsof"notlosinggenerality.
Let'ssaythatkdoesnotequal0istheanswer
Belowwords.
(2)whenk=0
MNforthelongaxisoftheellipse
|MN|=2
IPQI=
Sisequalto|,PQ,|,b2,MN,)isequalto2.
Comprehensive(I)(ii)knowledge
ThemaximumvalueofthequadranglePMQNareais2
Minimumvalueis.
TheargumentkwillbeFofx
Theequationofyisequalto0,whichisthefunctionofk
Toachievetheharmoniousstateof"thehomeandthehome”,the
parameterbecomesanimportantroleinsolvingtheproblem
Sometimesbecomealeadingrolein“going”.
[example2]fora£(1,1),pleasemakeinequalityestablished
constantxscope.
Itisnotdifficulttomaketheinequalityofthisproblemas
awhole
Thequestioniswhattodonext!Youaremainlyonx
Whataboutthequadraticinequality?Isgivenprioritytowith
a
We'retalkingaboutaninequality,right?Thedifficultyofthe
pointsisobvious.
Y=theminusfunctiononR
theoriginalinequality:x2+ax>2x+a+l.
Sothat,satimesxminus1plusx2minus2xminus1
Theconstantisformed1].
Thatf(a)=a(x-1)+(x2-2x-1).
Only(-up,1)U(3,+up)towant.Forexample3][function
y=maximumandminimum.
Let'ssayIhavetan=t
They=
Thet2(y-3)-2t+3-3=0,y(1)
t=tan£R,abouttequation(1)therewillbereal
root,△=4-4,3(y-3)(1)yp0.
The3y2T2y+80orless
Solution:2-islessthanorequalto2+.
Namelyymax=2+
Ymin=2
Theoriginaldeformation:sineofxminusycosinexisequal
to2yminus3
Y+phisin(x)=2-3.
|sin(x+phi))1orless
2-3|y|orless.
Squarereduction:3y2T2y+80orless.(downslightly)
Inthiscase,yisafunctionofx
Andit'safunctionofthetrigfunctionwiththerational
component.
Theusualmethodistodeterminetherangeoffunctionsbythe
discussionoftheindependentvariable,x
Butthetwosolutionsofthiscaseare"antivisitors.”
or
There*sarealsolutiontotheequationoft
Ortheboundedpropertyofthesinusoidalfunctiontodeal
directlywiththefunction,srange
Richard
Thereasonis:thesolutionissimple
Andalsocanachieveagoal.
Ifcosineof2thetaplus2msineofthetaminus2mminus2is
true
Tryrealisticnumbermscope.
Theanswerisno
Idon'tthinkofaquadraticformofsinetheta
Butasofmtypeatatime.
Theoriginalinequality:2m(sinetheta-1)<1+sin2theta.
Suchassinetheta=1
Is0<1constant
Atthispointm£R.
Suchassinethetaindicates1
sinethetaG[1,1]
Onlysineoftheta.
Sothesinetheta-1<0.
2m>2-
(1-sinetheta)+p2.
Ifandonlyif1minussineofthetaisequalto
Whenthesinetheta=1-
=2,
=2-2.
Tomake2m>constant,just2m>,2minus2
...m>1.
Combined:m(1-)
+up).
WeknowthatthedynamicpointPisthetwofocalpointsofthe
hyperbola=1
Fl
ThesumofthedistancesofF2isdetermined
AndtheminimumvalueofthecosineAngleF1PF2iszero.
(1)thetrajectoryequationofthedynamicpointP;
(2)ifweknowD(0,3)
M,NisonthetrajectoryofthepointP
And=lambda.
Thescopeofrealisticnumberlambda.
(1)thetrajectoryofamovingpointisanellipse
WhenPisontheellipse
Bycos<F1PF2=<0
TheAngleF1PF2willbeobtuseandthemaximumAngle
ThePshouldbetheshortaxisendpoint(proof)
Taketheellipticequations.
(2)MandNinellipticon,=lambda,
withcollinear,availableforreference,example
illustration5refs
Thewaytodeterminethescopeofthelambda.
(1)let'ssayP(x,y)isalittlebitonthetrajectory
Life|PF1|=rl
|PF2|=r2
rl+r2=2afixedvalue
and
Fl(0),
F2(
0)forfixed-point.
theellipticallocusofP
Known(cos<F1PF2)min=.
Andcos<F1PF2=
Here>0
Andrlr2=a2orless
acuity
thus
Cos<F1PF2-p-1=1.
Ifandonlyifrl=r2
WhenPistheshortaxis,1minusisequalto
a2=9
c2=5
,b2=4.
petitionstrajectoryequationofthefixedpointPthe:=
1.
(1)thepointD(0,3)isoutsidetheellipse
IfM(M
S)
N(N
T)ontheellipse.
=lambda.
Namely(m
S-lambda(n=3)
T-3),
•・••••
Eliminationofn2:
Jane:(13lambda-5)(lambda-1)=6tlambda(lambda-1)
Suchaslambda=1
The=
M
Noverlapinabit
AndthetangentpointofellipticalandlinearDM.
Suchaslambdaindicates1
A:t=
|t|2orless
-2of2orlessorless
Solutiontolambda£[
5].
Thediscussionofparameters,parameters,andparametersare
discussed
Ithasalwaysbeenoneofthekeypointsanddifficultiesin
thecollegeentranceexamination
Especiallywhentherearemoreparameters
Theyoftenfeelthattheymaynotleadordonotknowwhatto
do
Thebasicsolutiontothiskindofproblemisthatwhenthere
aremorethantwoparameters
Thenon-mainparametersshouldbegraduallydissipation
Youendupwithtwointerdependentparameters
Andthenwe'regoingtoendupwiththemeaninequality
Orbysolvingthegeneralinequality
Orthroughmathematicalmeans,suchastrigonometricfunction
todeterminethescopeoftherequestedparameters.
Whatkindofproblemissuitablefor"anti-visitors"?Ifthe
problemisnotasdifficultasitis
Youdon'thavetobeasnake
Iftheproblemitselfisdifficult
Butthetopicofasingle
Thereisnosuchthingasamaster
Isnotgoingto.
so
Itissuitablefor“anti-visitors“problem
Itmustbethatthefrontismoredifficult
Outburstandexchangethemainlocation(forexample,depending
onaparameterequationorfunction)iseasiertocrackproblem.
lowcorrespondingtraining
1.PleasemakeA=asallintegernumberx.
Wehavethesamesolution
Forthevalueofmandn.
3.Thesolutionequationaboutx:x4-6x3-2(a-3)x2+2(3
+4a)x+2a+a2=0.
Youknowthatyouhavetherightsequence{an}
Al=1
AndSn=
Thesequenceofthegeneralterm.
5.Solvingequationsx3+(1+)x2-2=0.
lowreferenceanswer
1.ThePepsicenter
LetxforAservice.
A-1=whenA£Z
AlsohaveA1GZ.
Ifx+1=0
IsA=1Z£(x=1).
Ifx+1indicatesa0
Are:1=£a.z.thistherearetwopossible.
(1)=+1.X2-4x+2=0
X=2mm;Orx2-2x+4=0
Norealsolution
Yea.
(2)isthetruescoreofmolecular1.thex2-3x+3=1
X=1or2.
Sotherealnumberisxisequaltonegative1
one
2
ThecorrespondingintegerisA=1
3
4
2.
Let's
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年电子智能化系统集成项目合同
- 深度融合促产业发展提质实施方案
- 2024唐朝古装离婚协议书婚内出轨赔偿及子女抚养协议3篇
- 同城渣土出售合同范例
- 商洛职业技术学院《文化万象英语视听说》2023-2024学年第一学期期末试卷
- 商洛学院《工程项目管理软件应用》2023-2024学年第一学期期末试卷
- 整套木工设备转让合同范例
- 中标水泥合同范例
- 锅炉改装合同范例
- 陕西中医药大学《现代社交礼仪》2023-2024学年第一学期期末试卷
- 中国联通合作方自服务门户系统操作手册-合作方人员操作V-1.0
- DB53_T 1113-2022预应力混凝土连续刚构桥施工监控技术规程
- 现代操作系统教程(慕课版)-课后习题答案1-8章全带原题
- 商业综合体项目可行性研究报告
- 危险化学品安全储存
- berg平衡评定量表
- 语文优秀教研组申报材料
- 03船舶证书一览表
- 墙体构造设计
- 成人哮喘生命质量评分表
- 数字油画-社团活动记录课件
评论
0/150
提交评论