高中数学解题思想方法技巧_第1页
高中数学解题思想方法技巧_第2页
高中数学解题思想方法技巧_第3页
高中数学解题思想方法技巧_第4页
高中数学解题思想方法技巧_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学解题思想方法技巧

Theinformationthatisworthhaving

Itcomesfromthegenerallearningaccumulationsummary

Theremustbeaproblem

Pleasebecritical!

The34thparametertoopenthedoorThetwosideshumility

lowmeterofinterpretations

parameter

Asthenameimplies

Itisareferencenumber

Forthemainvariablereference.So

Theparameteristothepivotentry

It'sakindofrelationship

Heisthemainservice

Acceptoryuanreuse.

Intheprocessofmathematics

Goingto

Bytheparametersingleadingroleplayscenarioisabnormal.

interestingly

Whatisthe''parameter

Thequestionofwhotochooseisthefirstquestionofsolving

theproblem

Youhavetwooptions

Oneisthattheparametersstandinfrontofthem

Decidedbyyou;Thesecondisthattheparameterisnotatall

Wantyoutobe“outofthinair.”

Lowtypicaldemonstration

(1)P,Q,MandNareallontheellipsex2+=1

FisthefocalpointonthepositiveaxisoftheY-axis

Knownandline

Andthe1ine

,and=0,

FortheareaofthequadrilateralPMQNminimumandmaximum.

Thequadrilateral"no"areaformula

Soit'shardtouseacertainlengthasaparameter

Createfunctionalarea.

Fortunately,

Ithastwoverticaldiagonallines,PQandMN

Sothequadrangleareacanberepresentedbytheirproduct

However,

Theyhavetofindrelationshipswiththeknownellipses

Youalsoneedaparameterk

AndfindthePQ

MNdependenceonktype.Thisis“false”.

[answer]thepicture

BytheconditionknownasMNandPQ

It'stwostringsofanellipse

IntersectatthefocalpointF(0

1)

AndPQMNcoming

ThereisatleastoneinlinePQandNM

Thereistheslope

MightaswellsetPQslopefork.

Thereisnokintheproblemset

Sothere'sa"nomiddleclass"parameter.

Weseeitasaresult

Isthatit

Notonlycanwesay|PQ|=fl(k)

Canalsosaid|MN|=f2(k).example1answerkeyfigure

AndthenwehavePQoverFof0

1)

SothePQequationisy=kx+1

Youplugthisintotheellipticequation(2+k2)x2+2kx-

1=0

Let,ssaythatthecoordinatesofPandQareequaltoxl

Yl)

(x2

Y2)

The

XI=

Thus|PQ|=2(xl,x2)2+2=(yl,y2),i.e.|PQ|=.

[insertlanguage]nomatterintheellipticalequation

OrP

Q

M

InthecoordinatesofN

X,yistherightpivotentry.Thisisthenewfunction

relationshipPQ=fl(k)=signthemainbintranslocation

Theproblemhasbeenturned.

(1)whenkisnotequalto0

TheslopeofMNfor-

Sameasabovecanpush

|MN|=,

SothequadrangleS=|PQ,||MN|=.

Makeu=k2+

ToS=.

Becauseu=k2+2orhigher

Whenk=+1

U=2

S=

AndSisafunctionofuasafunctionofthevariable

so

Sorless<2.

Theaboveisthebackboneofthesolution

Thefollowingk=0

It'sjustasmallsupplement

Inthebeautyofperfection

Onthegroundsof"notlosinggenerality.

Let'ssaythatkdoesnotequal0istheanswer

Belowwords.

(2)whenk=0

MNforthelongaxisoftheellipse

|MN|=2

IPQI=

Sisequalto|,PQ,|,b2,MN,)isequalto2.

Comprehensive(I)(ii)knowledge

ThemaximumvalueofthequadranglePMQNareais2

Minimumvalueis.

TheargumentkwillbeFofx

Theequationofyisequalto0,whichisthefunctionofk

Toachievetheharmoniousstateof"thehomeandthehome”,the

parameterbecomesanimportantroleinsolvingtheproblem

Sometimesbecomealeadingrolein“going”.

[example2]fora£(1,1),pleasemakeinequalityestablished

constantxscope.

Itisnotdifficulttomaketheinequalityofthisproblemas

awhole

Thequestioniswhattodonext!Youaremainlyonx

Whataboutthequadraticinequality?Isgivenprioritytowith

a

We'retalkingaboutaninequality,right?Thedifficultyofthe

pointsisobvious.

Y=theminusfunctiononR

theoriginalinequality:x2+ax>2x+a+l.

Sothat,satimesxminus1plusx2minus2xminus1

Theconstantisformed1].

Thatf(a)=a(x-1)+(x2-2x-1).

Only(-up,1)U(3,+up)towant.Forexample3][function

y=maximumandminimum.

Let'ssayIhavetan=t

They=

Thet2(y-3)-2t+3-3=0,y(1)

t=tan£R,abouttequation(1)therewillbereal

root,△=4-4,3(y-3)(1)yp0.

The3y2T2y+80orless

Solution:2-islessthanorequalto2+.

Namelyymax=2+

Ymin=2

Theoriginaldeformation:sineofxminusycosinexisequal

to2yminus3

Y+phisin(x)=2-3.

|sin(x+phi))1orless

2-3|y|orless.

Squarereduction:3y2T2y+80orless.(downslightly)

Inthiscase,yisafunctionofx

Andit'safunctionofthetrigfunctionwiththerational

component.

Theusualmethodistodeterminetherangeoffunctionsbythe

discussionoftheindependentvariable,x

Butthetwosolutionsofthiscaseare"antivisitors.”

or

There*sarealsolutiontotheequationoft

Ortheboundedpropertyofthesinusoidalfunctiontodeal

directlywiththefunction,srange

Richard

Thereasonis:thesolutionissimple

Andalsocanachieveagoal.

Ifcosineof2thetaplus2msineofthetaminus2mminus2is

true

Tryrealisticnumbermscope.

Theanswerisno

Idon'tthinkofaquadraticformofsinetheta

Butasofmtypeatatime.

Theoriginalinequality:2m(sinetheta-1)<1+sin2theta.

Suchassinetheta=1

Is0<1constant

Atthispointm£R.

Suchassinethetaindicates1

sinethetaG[1,1]

Onlysineoftheta.

Sothesinetheta-1<0.

2m>2-

(1-sinetheta)+p2.

Ifandonlyif1minussineofthetaisequalto

Whenthesinetheta=1-

=2,

=2-2.

Tomake2m>constant,just2m>,2minus2

...m>1.

Combined:m(1-)

+up).

WeknowthatthedynamicpointPisthetwofocalpointsofthe

hyperbola=1

Fl

ThesumofthedistancesofF2isdetermined

AndtheminimumvalueofthecosineAngleF1PF2iszero.

(1)thetrajectoryequationofthedynamicpointP;

(2)ifweknowD(0,3)

M,NisonthetrajectoryofthepointP

And=lambda.

Thescopeofrealisticnumberlambda.

(1)thetrajectoryofamovingpointisanellipse

WhenPisontheellipse

Bycos<F1PF2=<0

TheAngleF1PF2willbeobtuseandthemaximumAngle

ThePshouldbetheshortaxisendpoint(proof)

Taketheellipticequations.

(2)MandNinellipticon,=lambda,

withcollinear,availableforreference,example

illustration5refs

Thewaytodeterminethescopeofthelambda.

(1)let'ssayP(x,y)isalittlebitonthetrajectory

Life|PF1|=rl

|PF2|=r2

rl+r2=2afixedvalue

and

Fl(0),

F2(

0)forfixed-point.

theellipticallocusofP

Known(cos<F1PF2)min=.

Andcos<F1PF2=

Here>0

Andrlr2=a2orless

acuity

thus

Cos<F1PF2-p-1=1.

Ifandonlyifrl=r2

WhenPistheshortaxis,1minusisequalto

a2=9

c2=5

,b2=4.

petitionstrajectoryequationofthefixedpointPthe:=

1.

(1)thepointD(0,3)isoutsidetheellipse

IfM(M

S)

N(N

T)ontheellipse.

=lambda.

Namely(m

S-lambda(n=3)

T-3),

•・••••

Eliminationofn2:

Jane:(13lambda-5)(lambda-1)=6tlambda(lambda-1)

Suchaslambda=1

The=

M

Noverlapinabit

AndthetangentpointofellipticalandlinearDM.

Suchaslambdaindicates1

A:t=

|t|2orless

-2of2orlessorless

Solutiontolambda£[

5].

Thediscussionofparameters,parameters,andparametersare

discussed

Ithasalwaysbeenoneofthekeypointsanddifficultiesin

thecollegeentranceexamination

Especiallywhentherearemoreparameters

Theyoftenfeelthattheymaynotleadordonotknowwhatto

do

Thebasicsolutiontothiskindofproblemisthatwhenthere

aremorethantwoparameters

Thenon-mainparametersshouldbegraduallydissipation

Youendupwithtwointerdependentparameters

Andthenwe'regoingtoendupwiththemeaninequality

Orbysolvingthegeneralinequality

Orthroughmathematicalmeans,suchastrigonometricfunction

todeterminethescopeoftherequestedparameters.

Whatkindofproblemissuitablefor"anti-visitors"?Ifthe

problemisnotasdifficultasitis

Youdon'thavetobeasnake

Iftheproblemitselfisdifficult

Butthetopicofasingle

Thereisnosuchthingasamaster

Isnotgoingto.

so

Itissuitablefor“anti-visitors“problem

Itmustbethatthefrontismoredifficult

Outburstandexchangethemainlocation(forexample,depending

onaparameterequationorfunction)iseasiertocrackproblem.

lowcorrespondingtraining

1.PleasemakeA=asallintegernumberx.

Wehavethesamesolution

Forthevalueofmandn.

3.Thesolutionequationaboutx:x4-6x3-2(a-3)x2+2(3

+4a)x+2a+a2=0.

Youknowthatyouhavetherightsequence{an}

Al=1

AndSn=

Thesequenceofthegeneralterm.

5.Solvingequationsx3+(1+)x2-2=0.

lowreferenceanswer

1.ThePepsicenter

LetxforAservice.

A-1=whenA£Z

AlsohaveA1GZ.

Ifx+1=0

IsA=1Z£(x=1).

Ifx+1indicatesa0

Are:1=£a.z.thistherearetwopossible.

(1)=+1.X2-4x+2=0

X=2mm;Orx2-2x+4=0

Norealsolution

Yea.

(2)isthetruescoreofmolecular1.thex2-3x+3=1

X=1or2.

Sotherealnumberisxisequaltonegative1

one

2

ThecorrespondingintegerisA=1

3

4

2.

Let's

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论