湖南省沅江三中2022-2023学年数学高三第一学期期末质量检测试题含解析_第1页
湖南省沅江三中2022-2023学年数学高三第一学期期末质量检测试题含解析_第2页
湖南省沅江三中2022-2023学年数学高三第一学期期末质量检测试题含解析_第3页
湖南省沅江三中2022-2023学年数学高三第一学期期末质量检测试题含解析_第4页
湖南省沅江三中2022-2023学年数学高三第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A. B. C. D.2.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A. B. C. D.3.已知函数,不等式对恒成立,则的取值范围为()A. B. C. D.4.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A. B. C. D.55.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.256.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是()A.16 B.12 C.8 D.67.执行如图所示的程序框图,则输出的的值为()A. B.C. D.8.已知复数z,则复数z的虚部为()A. B. C.i D.i9.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.36cm3 B.48cm3 C.60cm3 D.72cm310.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为()A. B. C. D.11.定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是()A. B. C. D.12.已知函数,,且,则()A.3 B.3或7 C.5 D.5或8二、填空题:本题共4小题,每小题5分,共20分。13.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是____________.14.一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有_______种.15.经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是________________.16.根据如图所示的伪代码,若输出的的值为,则输入的的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,,其前n项和为.(1)通过计算,,,猜想并证明数列的通项公式;(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.18.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示.组别频数(1)已知此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求;(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.(ⅰ)得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;(ⅱ)每次赠送的随机话费和相应的概率如下表.赠送的随机话费/元概率现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望.附:,若,则,,.19.(12分)为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、、、、分组,绘成频率分布直方图如图:(1)分别求出所抽取的人中得分落在组和内的人数;(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.20.(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积.21.(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.(1)求椭圆的方程;(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,,求证:直线恒过一个定点.22.(10分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.2、B【解析】

先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.3、C【解析】

确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.4、D【解析】

根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【详解】依题意得,,,因此该双曲线的离心率.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.5、D【解析】

由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.6、B【解析】

根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.7、B【解析】

列出循环的每一步,进而可求得输出的值.【详解】根据程序框图,执行循环前:,,,执行第一次循环时:,,所以:不成立.继续进行循环,…,当,时,成立,,由于不成立,执行下一次循环,,,成立,,成立,输出的的值为.故选:B.【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.8、B【解析】

利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.9、B【解析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.10、C【解析】

如图所示:切点为,连接,作轴于,计算,,,,根据勾股定理计算得到答案.【详解】如图所示:切点为,连接,作轴于,,故,在中,,故,故,,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.11、B【解析】

结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即可.【详解】结合题意可知为偶函数,且在单调递减,故可以转换为对应于恒成立,即即对恒成立即对恒成立令,则上递增,在上递减,所以令,在上递减所以.故,故选B.【点睛】本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.12、B【解析】

根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题二、填空题:本题共4小题,每小题5分,共20分。13、②③【解析】

根据局部频率和整体频率的关系,依次判断每个选项得到答案.【详解】不能确定甲乙两校的男女比例,故①不正确;因为甲乙两校的男生的优秀率均大于女生成绩的优秀率,故甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率,故②正确;因为不能确定甲乙两校的男女比例,故不能确定甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系,故③正确.故答案为:②③.【点睛】本题考查局部频率和整体频率的关系,意在考查学生的理解能力和应用能力.14、11【解析】

将图形中左侧的两列瓷砖的形状先确定,再由此进行分类,在每一类里面又分按两种形状的瓷砖的数量进行分类,在其中会有相同元素的排列问题,需用到“缩倍法”.采用分类计数原理,求得总的方法数.【详解】(1)先贴如图这块瓷砖,然后再贴剩下的部分,按如下分类:5个:,3个,2个:,1个,4个:,(2)左侧两列如图贴砖,然后贴剩下的部分:3个:,1个,2个:,综上,一共有(种).故答案为:11.【点睛】本题考查了分类计数原理,排列问题,其中涉及到相同元素的排列,用到了“缩倍法”的思想.属于中档题.15、【解析】

作出图形,设点,则、,设点,利用点差法得出,利用斜率公式得出,进而可得出,可得出,由此可求得的值.【详解】设点,则、,设点,则,两式相减得,即,即,由斜率公式得,,,故,因此,.故答案为:.【点睛】本题考查椭圆中角的余弦值的求解,涉及了点差法与斜率公式的应用,考查计算能力,属于中等题.16、【解析】

算法的功能是求的值,根据输出的值,分别求出当时和当时的值即可得解.【详解】解:由程序语句知:算法的功能是求的值,当时,,可得:,或(舍去);当时,,可得:(舍去).综上的值为:.故答案为:.【点睛】本题考查了选择结构的程序语句,根据语句判断算法的功能是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),证明见解析;(2)【解析】

(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围.【详解】(1)数列满足,,其前项和为.所以,,则,,,所以猜想得:.证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列.所以,整理得.(2)数列满足,,所以,则,所以.则,所以,所以,整理得,由于,所以,即.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠乘法的应用,函数的单调性在数列中的应用,基本不等式的应用,主要考察学生的运算能力和转换能力,属于中档题型.18、(1);(2)见解析.【解析】

(1)根据题中所给的统计表,利用公式计算出平均数的值,再利用数据之间的关系将、表示为,,利用题中所给数据,以及正态分布的概率密度曲线的对称性,求出对应的概率;(2)根据题意,高于平均数和低于平均数的概率各为,再结合得元、元的概率,分析得出话费的可能数据都有哪些,再利用公式求得对应的概率,进而得出分布列,之后利用离散型随机变量的分布列求出其数学期望.【详解】(1)由题意可得,易知,,,;(2)根据题意,可得出随机变量的可能取值有、、、元,,,,.所以,随机变量的分布列如下表所示:所以,随机变量的数学期望为.【点睛】本题考查概率的计算,涉及到平均数的求法、正态分布概率的计算以及离散型随机变量分布列及其数学期望,在解题时要弄清楚随机变量所满足的分布列类型,结合相应公式计算对应事件的概率,考查计算能力,属于中等题.19、(1)所抽取的人中得分落在组和内的人数分别为人、人;(2)分布列见解析,.【解析】

(1)将分别乘以区间、对应的矩形面积可得出结果;(2)由题可知,随机变量的可能取值为、、,利用超几何分布概率公式计算出随机变量在不同取值下的概率,可得出随机变量的分布列,并由此计算出随机变量的数学期望值.【详解】(1)由题意知,所抽取的人中得分落在组的人数有(人),得分落在组的人数有(人).因此,所抽取的人中得分落在组的人数有人,得分落在组的人数有人;(2)由题意可知,随机变量的所有可能取值为、、,,,,所以,随机变量的分布列为:所以,随机变量的期望为.【点睛】本题考查利用频率分布直方图计算频数,同时也考查了离散型随机变量分布列与数学期望的求解,考查计算能力,属于基础题.20、(1)见解析(2)【解析】

(1)连接与交于,连接,证明即可得证线面平行;(2)首

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论