版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市福清市林厝初级中学2025届九上数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.海南渔民从事海洋捕捞已有上千年历史,南海是海南渔民的“祖宗海”,目前海南共有约25万人从事渔业生产.这个数据用科学记数法表示为()A.2.5×106人 B.25×104人 C.2.5×104人 D.2.5×105人2.如图,是的直径,点,在上,若,则的度数为()A. B. C. D.3.若点(2,3)在反比例函数y=的图象上,那么下列各点在此图象上的是()A.(-2,3) B.(1,5) C.(1,6) D.(1,-6)4.把多项式分解因式,结果正确的是()A. B.C. D.5.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5 B.7.5 C.9.5 D.86.如图,A,B,C,D是⊙O上的四个点,弦AC,BD交于点P.若∠A=∠C=40°,则∠BPC的度数为()A.100° B.80°C.50° D.40°7.气象台预报“铜陵市明天降水概率是75%”.据此信息,下列说法正确的是()A.铜陵市明天将有75%的时间降水 B.铜陵市明天将有75%的地区降水C.铜陵市明天降水的可能性比较大 D.铜陵市明天肯定下雨8.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20
m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5
m,两个路灯的高度都是9
m,则两路灯之间的距离是()
A.24
m B.25
m C.28
m D.30
m9.方程的解是()A. B. C., D.,10.如图,在矩形中,,对角线相交于点,垂直平分于点,则的长为()A.4 B. C.5 D.11.如图,点A,B的坐标分别为(0,8),(10,0),动点C,D分别在OA,OB上且CD=8,以CD为直径作⊙P交AB于点E,F.动点C从点O向终点A的运动过程中,线段EF长的变化情况为()A.一直不变 B.一直变大C.先变小再变大 D.先变大再变小12.如图,在中,,,,点为上任意一点,连结,以,为邻边作平行四边形,连结,则的最小值为()A. B. C. D.二、填空题(每题4分,共24分)13.反比例函数y=的图象经过点(﹣2,3),则k的值为_____.14.如图,抛物线和抛物线的顶点分别为点M和点N,线段MN经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是__________,MN平移到PQ扫过的阴影部分的面积是__________.15.关于的方程的一个根是,则它的另一个根是__________.16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.17.若,则=____________.18.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)为______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数y=x+2的图象与y轴交于A点,与x轴交于B点,⊙P的半径为,其圆心P在x轴上运动.(1)如图1,当圆心P的坐标为(1,0)时,求证:⊙P与直线AB相切;(2)在(1)的条件下,点C为⊙P上在第一象限内的一点,过点C作⊙P的切线交直线AB于点D,且∠ADC=120°,求D点的坐标;(3)如图2,若⊙P向左运动,圆心P与点B重合,且⊙P与线段AB交于E点,与线段BO相交于F点,G点为弧EF上一点,直接写出AG+OG的最小值.20.(8分)已知关于的一元二次方程.(1)求证:对于任意实数,方程总有两个不相等的实数根;(2)若方程的一个根是1,求的值及方程的另一个根.21.(8分)如图,已知直线y=x+3与x轴、y轴分别交于点A、B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式和顶点坐标;(2)在第三象限内的抛物线上是否存在一点F,使A、E、C、F为顶点的四边形面积为6?若存在,直接写出点F的坐标;若不存在,说明理由.22.(10分)网络销售是一种重要的销售方式.某农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量与销售单价(元)满足如图所示的函数关系(其中).(1)若,求与之间的函数关系式;(2)销售单价为多少元时,每天的销售利润最大?最大利润是多少元?23.(10分)如图,已知直线y=﹣x+4与反比例函数的图象相交于点A(﹣2,a),并且与x轴相交于点B.(1)求a的值;(2)求反比例函数的表达式;(3)求△AOB的面积.24.(10分)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,求PD的长度最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.25.(12分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.26.在一个三角形中,如果有一边上的中线等于这条边的一半,那么就称这个三角形为“智慧三角形”.(1)如图1,已知、是⊙上两点,请在圆上画出满足条件的点,使为“智慧三角形”,并说明理由;(2)如图2,是等边三角形,,以点为圆心,的半径为1画圆,为边上的一动点,过点作的一条切线,切点为,求的最小值;(3)如图3,在平面直角坐标系中,⊙的半径为1,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,求出此时点的坐标.
参考答案一、选择题(每题4分,共48分)1、D【分析】对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.【详解】25万人=2.5×105人.故选D.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、C【分析】先根据圆周角定理求出∠ACD的度数,再由直角三角形的性质可得出结论.【详解】∵,∴∠ABD=∠ACD=40°,∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BCD=∠ACB-∠ACD=90°-40°=50°.
故选:C.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.3、C【解析】将(2,3)代入y=即可求出k的值,再根据k=xy解答即可.【详解】∵点(2,3)在反比例函数y=(k≠0)的图象上,∴k=xy=2×3=6,A、∵-2×3=-6≠6,∴此点不在函数图象上;B、∵1×5=5≠6,∴此点不在函数图象上;C、∵1×6=6,此点在函数图象上;D、∵1×(-6)=-6≠6,此点不在函数图象上.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.4、B【分析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:;完全平方公式:;【详解】解:,故选B.【点睛】本题考查了分解因式,熟练运用平方差公式是解题的关键5、A【解析】根据垂径定理得到直角三角形,求出的长,连接,得到直角三角形,然后在直角三角形中计算出半径的长.【详解】解:如图所示:连接,则长为半径.∵于点,∴,∵在中,,∴,∴,故答案为A.【点睛】本题主要考查垂径定理和勾股定理.根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的弧”得到一直角边,利用勾股定理列出关于半径的等量关系是解题关键.6、B【分析】根据同一个圆中,同弧所对的圆周角相等,可知,结合题意求的度数,再根据三角形的一个外角等于其不相邻两个内角和解题即可.【详解】故选B【点睛】本题考查圆的综合,其中涉及圆周角定理、三角形外角性质,是常见考点,熟练掌握相关知识是解题关键.7、C【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案.【详解】解:根据概率表示某事情发生的可能性的大小,分析可得:
A、铜陵市明天将有75%的时间降水,故此选项错误;
B、铜陵市明天将有75%的地区降水,故此选项错误;
C、明天降水的可能性为75%,比较大,故此选项正确;
D、明天肯定下雨,故此选项错误;
故选:C.【点睛】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.8、D【解析】由题意可得:EP∥BD,所以△AEP∽△ADB,所以,因为EP=1.5,BD=9,所以,解得:AP=5,因为AP=BQ,PQ=20,所以AB=AP+BQ+PQ=5+5+20=30,故选D.点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.9、C【分析】先把从方程的右边移到左边,并把两边都除以4化简,然后用因式分解法求解即可.【详解】∵,∴,∴,∴,∴,.故选C.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.10、B【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=;故选:B.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.11、D【解析】如图,连接OP,PF,作PH⊥AB于H.点P的运动轨迹是以O为圆心、OP为半径的⊙O,易知EF=2FH=2,观察图形可知PH的值由大变小再变大,推出EF的值由小变大再变小.【详解】如图,连接OP,PF,作PH⊥AB于H.∵CD=8,∠COD=90°,∴OP=CD=4,∴点P的运动轨迹是以O为圆心OP为半径的⊙O,∵PH⊥EF,∴EH=FH,∴EF=2FH=2,观察图形可知PH的值由大变小再变大,∴EF的值由小变大再变小,故选:D.【点睛】此题主要考查圆与几何综合,解题的关键是熟知勾股定理及直角坐标系的特点.12、A【分析】设PQ与AC交于点O,作⊥于,首先求出,当P与重合时,PQ的值最小,PQ的最小值=2.【详解】设与AC交于点O,作⊥于,如图所示:
在Rt△ABC中,∠BAC=90,∠ACB=45,
∴,∵四边形PAQC是平行四边形,
∴,∵⊥,∠ACB=45,∴,当与重合时,OP的值最小,则PQ的值最小,
∴PQ的最小值故选:A.【点睛】本题考查了勾股定理的运用、平行四边形的性质以及垂线段最短的性质,利用垂线段最短求线段的最小值是解题的关键.二、填空题(每题4分,共24分)13、-1【解析】将点(−2,3)代入解析式可求出k的值.【详解】把(−2,3)代入函数y=中,得3=,解得k=−1.故答案为−1.【点睛】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.14、(1,5)16【分析】先将M、N两点坐标分别求出,然后根据N点的移动规律得出M点的横坐标向右移动2个单位长度,进一步即可求出M点坐标;根据二次函数图像性质我们可以推断出MN平移到PQ扫过的阴影部分的面积等同于菱形MNQP,之后进一步求出相关面积即可.【详解】由题意得:M点坐标为(-1,1),N点坐标为(1,-3),∵点Q横坐标为3,∴N点横坐标向右平移了2个单位长度,∴P点横坐标为-1+2=1,∴P点纵坐标为:1+2+2=5,∴P点坐标为:(1,5),由题意得:Q点坐标为:(3,1),∴MQ平行于x轴,PN平行于Y轴,∴MQ⊥PN,∴四边形MNQP为菱形,∴菱形MNQP面积=×MQ×PN=16,∴MN平移到PQ扫过的阴影部分的面积等于16,故答案为:(1,5),16.【点睛】本题主要考查了二次函数图像的性质及运用,熟练掌握相关概念是解题关键.15、6【分析】根据一元二次方程的根与系数的关系解答即可.【详解】解:设方程的另一个根是,则,解得:.故答案为:6.【点睛】本题考查了一元二次方程根与系数的关系,属于基础题型,熟练掌握一元二次方程的两根之和与两根之积与其系数的关系是解此类题的关键.16、1.【解析】根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知,即,解得AM=1.∴小明的影长为1米.17、【分析】根据合比定理即可得答案.【详解】∵,∴,∴=,故答案为:【点睛】本题考查合比定理,如果,那么;熟练掌握合比定理是解题关键.18、【分析】直接根据正切的定义求解即可.【详解】在Rt△ABC中,约为,高为,∵tan∠ABC=,∴BC=m.故答案为:.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.三、解答题(共78分)19、(1)见解析;(2)D(,+2);(3).【分析】(1)连接PA,先求出点A和点B的坐标,从而求出OA、OB、OP和AP的长,即可确定点A在圆上,根据相似三角形的判定定理证出△AOB∽△POA,根据相似三角形的性质和等量代换证出PA⊥AB,即可证出结论;(2)连接PA,PD,根据切线长定理可求出∠ADP=∠PDC=∠ADC=60°,利用锐角三角函数求出AD,设D(m,m+2),根据平面直角坐标系中任意两点之间的距离公式求出m的值即可;(3)在BA上取一点J,使得BJ=,连接BG,OJ,JG,根据相似三角形的判定定理证出△BJG∽△BGA,列出比例式可得GJ=AG,从而得出AG+OG=GJ+OG,设J点的坐标为(n,n+2),根据平面直角坐标系中任意两点之间的距离公式求出n,从而求出OJ的长,然后根据两点之间线段最短可得GJ+OG≥OJ,即可求出结论.【详解】(1)证明:如图1中,连接PA.∵一次函数y=x+2的图象与y轴交于A点,与x轴交于B点,∴A(0,2),B(﹣4,0),∴OA=2,OB=4,∵P(1,0),∴OP=1,∴OA2=OB•OP,AP=∴=,点A在圆上∵∠AOB=∠AOP=90°,∴△AOB∽△POA,∴∠OAP=∠ABO,∵∠OAP+∠APO=90°,∴∠ABO+∠APO=90°,∴∠BAP=90°,∴PA⊥AB,∴AB是⊙P的切线.(2)如图1﹣1中,连接PA,PD.∵DA,DC是⊙P的切线,∠ADC=120°,∴∠ADP=∠PDC=∠ADC=60°,∴∠APD=30°,∵∠PAD=90°∴AD=PA•tan30°=,设D(m,m+2),∵A(0,2),∴m2+(m+2﹣2)2=,解得m=±,∵点D在第一象限,∴m=,∴D(,+2).(3)在BA上取一点J,使得BJ=,连接BG,OJ,JG.∵OA=2,OB=4,∠AOB=90°,∴AB===2,∵BG=,BJ=,∴BG2=BJ•BA,∴=,∵∠JBG=∠ABG,∴△BJG∽△BGA,∴==,∴GJ=AG,∴AG+OG=GJ+OG,∵BJ=,设J点的坐标为(n,n+2),点B的坐标为(-4,0)∴(n+4)2+(n+2)2=,解得:n=-3或-5(点J在点B右侧,故舍去)∴J(﹣3,),∴OJ==∵GJ+OG≥OJ,∴AG+OG≥,∴AG+OG的最小值为.故答案为.【点睛】此题考查的是一次函数与圆的综合大题,掌握相似三角形的判定及性质、切线的判定及性质、切线长定理、勾股定理、锐角三角函数和两点之间线段最短是解决此题的关键.20、(1)见解析;(2),【分析】(1)将方程转化为一般式,然后得出根的判别式,得出判别式为非负数得出答案;(2)将代入方程求出的值,然后根据解方程的方法得出另一个根.【详解】解:(1)∴对于任意实数,方程总有两个不相等的实数根;(2)当时,,∴【点睛】本题考查了解一元二次的方程以及判别式.21、(1)抛物线的解析式为y=-x2-2x+3,顶点坐标(-1,4);(2)存在点F(-1-,-1)【分析】(1)要求抛物线y=-x2+bx+c的解析式,由于b与c待定,为此要找抛物线上两点坐标,抛物线y=-x2+bx+c经过A、B两点,且直线y=x+3与x轴、y轴分别交于点A、B,让x=0,求y值,让y=0,求x的值A、B两点坐标代入解析式,利用配方变顶点式即可,(2)使A、E、C、F为顶点的四边形面积为1,AC把四边形分为两个三角形,△ACE,△ACF,由抛物线y=-x2-2x+3与x轴交点A、C两点,y=0,可求A、C两点坐标,则AC长可求,点E在直线y=x+3上,由在对称轴上,可求,设第三象限抛物线上的点纵坐标为-m,S四边形AECF=,可求F点的纵坐标-m,把y=-m代入抛物线解析式,求出x即可.【详解】(1)已知直线y=x+3与x轴、y轴分别交于点A、B,∴当x=0时,y=3,B(0,3),∴当y=0时,x+3=0,x=-3,A(-3,0),抛物线y=-x2+bx+c经过A、B两点,A、B两点坐标代入解析式,解得,抛物线y=-x2-2x+3,抛物线y=-x2-2x+3=-(x+1)2+4,抛物线顶点坐标(-1,4),(2)使A、E、C、F为顶点的四边形面积为1,抛物线y=-x2-2x+3与x轴交点A、C两点,y=0,-x2-2x+3=0,解得x=1或x=-3,A(-3,0),C(1,0),点E在直线y=x+3上,当x=-1时,y=-1+3=2,设第三象限抛物线上的点纵坐标为-m,S四边形AECF=S四边形AECF=,AC=4,2+m=3,m=1,当y=-1时,-1=-x2-2x+3,x=-1±,由x<0,x=-1-,点F(-1-,-1),故存在第三象限内的抛物线上点F(-1-,-1),使A、E、C、F为顶点的四边形面积为1.【点睛】本题考查抛物线解析式,顶点以及四边形面积问题,确定抛物线上两点确保,会利用一次函数求两轴交点坐标,会利用配方法把抛物线解析式变为顶点式,会利用AC把四边形分成两个三角形求面积来解决问题.22、(1);(2)当时,每天的销售利润最大,最大是3200元.【分析】(1)设与之间的函数关系式为y=kx+b;利用待定系数法求出k和b的值即可得答案;(2)设每天的销售利润为元,根据利润=(售价-成本)×销量可得出与x的关系式,利用二次函数的性质及一次函数的性质,根据x的取值范围求出的最大值即可得答案【详解】(1)设,把代入,得解得∴;(2)设每天的销售利润为元,当时,,∵600>0,∴随x的增大而增大,∴当时,(元);当时,,∴当时,,综上所述,当时,每天的销售利润最大,最大是3200元.【点睛】本题考查二次函数的应用,熟练掌握一次函数和二次函数的性质是解题关键.23、(1)a=6;(2);(3)1【解析】(1)把A的坐标代入直线解析式求a;(2)把求出的A点坐标代入反比例解析式中求k,从而得解析式;求B点坐标,结合A点坐标求面积.【详解】解:(1)将A(﹣2,a)代入y=﹣x+4中,得:a=﹣(﹣2)+4,所以a=6(2)由(1)得:A(﹣2,6)将A(﹣2,6)代入中,得到:,即k=﹣1所以反比例函数的表达式为:(3)如图:过A点作AD⊥x轴于D;∵A(﹣2,6)∴AD=6在直线y=﹣x+4中,令y=0,得x=4∴B(4,0),即OB=4∴△AOB的面积S=OB×AD=×4×6=1.考点:反比例函数综合题.24、(1)y=x2﹣4x+1;(2)PD的长度最大时点P的坐标为(,﹣);(1)点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2)【分析】(1)用待定系数法法求解;把已知点的坐标分别代入解析式可得;(2)设P(m,m2﹣4m+1),将点B(1,0)、C(0,1)代入得直线BC解析式为yBC=﹣x+1.过点P作y轴的平行线交直线BC于点D,则D(m,﹣m+1),PD==﹣(m﹣)2+,求函数最值可得.(1)设存在以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),EF=CF=2,求出EC=2,根据菱形性质,ME=EC=2,可求出M的坐标;注意当EM=EF=2时,M(2,1).【详解】解:(1)∵抛物线y=ax2+bx+1(a≠0)经过点A(1,0)和点B(1,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+1;(2)如图:设P(m,m2﹣4m+1),将点B(1,0)、C(0,1)代入得直线BC解析式为yBC=﹣x+1.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+1),∴PD=(﹣m+1)﹣(m2﹣4m+1)=﹣m2+1m.=﹣(m﹣)2+.∴当m=时,PD有最大值.当m=时,m2﹣4m+1=﹣.∴P(,﹣).答:PD的长度最大时点P的坐标为(,﹣).(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴ME=EC=2,∴M(2,1﹣2)或(2,1+2)当EM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯机房管理规章
- 名著阅读《红星照耀中国》-八年级语文上册同步备课精讲(统编版)
- 西京学院《信息检索导论》2023-2024学年第一学期期末试卷
- 西京学院《商务应用文写作》2022-2023学年第一学期期末试卷
- 人教版五年级上册第11课新型玻璃
- 西京学院《机电一体化系统设计》2021-2022学年期末试卷
- 幼儿园小班儿歌《晒太阳》课件
- 西华师范大学《组织行为学》2022-2023学年第一学期期末试卷
- 人教版初中课件
- 西华师范大学《小学课程设计与评价》2023-2024学年第一学期期末试卷
- 《哈利波特与魔法石》
- 电厂运维安全员职责
- 艺术收藏科普知识讲座
- 期权策略及案例分析
- 平面镜成像-说课
- DB1306-T 102-2021 天花粉产地初加工技术规程
- Unit5PartALet'stryLet'stalk(学习任务单)六年级英语上册(人教PEP版)
- 中心供氧系统故障诊断与维护策略
- 国开2023秋《人文英语3》第5-8单元作文练习参考答案
- 高三一模总结主题班会课件
- 《艺术概论》教案-第五章 艺术接受
评论
0/150
提交评论