版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省湖州市2025届数学九上期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.关于的一元二次方程x2﹣2+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣22.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.63.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是A. B. C. D.4.如图,AB是O的直径,AB=4,C为的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为()A.2 B. C. D.5.下列四张扑克牌图案,属于中心对称图形的是()A. B. C. D.6.抛物线y=(x-3)2+4的顶点坐标是()A.(-1,2)B.(-1,-2)C.(1,-2)D.(3,4)7.某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生8.方程x=x(x-1)的根是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=29.如图在中,弦于点于点,若则的半径的长为()A. B. C. D.10.如图,线段与相交于点,连接,且,要使,应添加一个条件,不能证明的是()A. B. C. D.二、填空题(每小题3分,共24分)11.点(﹣1,)、(2,)是直线上的两点,则(填“>”或“=”或“<”)12.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系是h=+20t+1,若此礼炮在升空到最高处时引爆,到引爆需要的时间为_____s.13.在平面直角坐标系中,与位似,位似中心为原点,点与点是对应顶点,且点A,点的坐标分别是,,那么与的相似比为__________.14.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为___________.15.如图,已知两个反比例函数和在第一象限内的图象,设点在上,轴于点交于点轴于点交于点,则四边形的面积为_______________________.16.对于实数,定义运算“◎”如下:◎.若◎,则_____.17.如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为,则这个正方形的边长为_____________18.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.三、解答题(共66分)19.(10分)如图,▱ABCD中,连接AC,AB⊥AC,tanB=,E、F分别是BC,AD上的点,且CE=AF,连接EF交AC与点G.(1)求证:G为AC中点;(2)若EF⊥BC,延长EF交BA的延长线于H,若FH=4,求AG的长.20.(6分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间恰好构成一次函数关系:y=﹣500x+1.在这样的情况下,如果要确保每周有40000元的门票收入,那么门票价格应定为多少元?21.(6分)如图,抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)如图1,求△BCD的面积;(2)如图2,P是抛物线BD段上一动点,连接CP并延长交x轴于E,连接BD交PC于F,当△CDF的面积与△BEF的面积相等时,求点E和点P的坐标.22.(8分)如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是1.(1)求抛物线的解析式及顶点坐标;(1)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.23.(8分)已知二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),若这个二次函数与x轴交于A.B两点,与y轴交于点C,求出△ABC的面积.24.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1;(1)画出△ABC关于原点O对称的△A1B1C1.25.(10分)如图,在平面直角坐标系中,抛物线与轴交于点,点,与轴交于点,连接,位于轴右侧且垂直于轴的动直线,沿轴正方向从运动到(不含点和点),且分别交抛物线、线段以及轴于点,,.连接,,,,.(1)求抛物线的表达式;(2)如图1,当直线运动时,求使得和相似的点点的横坐标;(3)如图1,当直线运动时,求面积的最大值;(4)如图2,抛物线的对称轴交轴于点,过点作交轴于点.点、分别在对称轴和轴上运动,连接、.当的面积最大时,请直接写出的最小值.26.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
参考答案一、选择题(每小题3分,共30分)1、A【分析】关于x的一元二次方程x²+2x+k=0有两个相等的实数根,可知其判别式为0,据此列出关于k的不等式,解答即可.【详解】根据一元二次方程根与判别式的关系,要使得x2﹣2+k=0有两个相等实根,只需要△=(-2)²-4k=0,解得k=1.故本题正确答案为A.【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2、D【分析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1.【详解】∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,
则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故选D.3、B【解析】分析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值:tan∠AOB=.故选B.4、D【解析】取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.【详解】解:如图,取AO的中点Q,连接CQ,QD,OD,∵C为的三等分点,∴的度数为60°,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∵Q为OA的中点,∴CQ⊥OA,∠OCQ=30°,∴OQ=,由勾股定理可得,CQ=,∵D为AP的中点,∴OD⊥AP,∵Q为OA的中点,∴DQ=,∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为.故选D【点睛】本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.5、B【解析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.解答:解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选B.6、D【解析】根据抛物线解析式y=(x-3)2+4,可直接写出顶点坐标.【详解】y=(x-3)2+4的顶点坐标是(3,4).故选D.【点睛】此题考查了二次函数y=a(x-h)2+k的性质,对于二次函数y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=k.7、C【分析】根据概率的意义,可知发生地震的概率是,说明发生地震的可能性大于不发生地震的可能性,从而可以解答本题.【详解】∵某地质学家预测:在未来的20年内,F市发生地震的概率是,∴未来20年内,F市发生地震的可能性比没有发生地震的可能性大,故选C.【点睛】本题主要考查概率的意义,发生地震的概率是,说明发生地震的可能性大于不发生地政的可能性,这是解答本题的关键.8、D【详解】解:先移项,再把方程左边分解得到x(x﹣1﹣1)=0,原方程化为x=0或x﹣1﹣1=0,解得:x1=0;x2=2故选D.【点睛】本题考查因式分解法解一元二次方程,掌握因式分解的技巧进行计算是解题关键.9、C【分析】根据垂径定理求得OD,AD的长,并且在直角△AOD中运用勾股定理即可求解.【详解】解:弦,于点,于点,四边形是矩形,,,,;故选:.【点睛】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD,AE的长是解决问题的关键.10、D【分析】根据三角形全等的判定定理逐项判断即可.【详解】A、在和中,则,此项不符题意B、在和中,则,此项不符题意C、在和中,则,此项不符题意D、在和中,,但两组相等的对应边的夹角和未必相等,则不能证明,此项符合题意故选:D.【点睛】本题考查了三角形全等的判定定理,熟记各定理是解题关键.二、填空题(每小题3分,共24分)11、<.【解析】试题分析:∵k=2>0,y将随x的增大而增大,2>﹣1,∴<.故答案为<.考点:一次函数图象上点的坐标特征.12、1【分析】将关系式h=t2+20t+1转化为顶点式就可以直接求出结论.【详解】解:∵h=t2+20t+1=(t﹣1)2+11,∴当t=1时,h取得最大值,即礼炮从升空到引爆需要的时间为1s,故答案为:1.【点睛】本题考查了二次函数的性质顶点式的运用,解答时将一般式化为顶点式是关键.13、2【分析】分别求出OA和OA1的长度即可得出答案.【详解】根据题意可得,,,所以相似比=,故答案为2.【点睛】本题考查的是位似,属于基础图形,位似图形上任意一对对应点到位似中心的距离之比等于相似比.14、1.【详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=1,∵在▱ABCD中AB=CD.∴CD=1.故答案为:1【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.15、【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=,S矩形PCOD=3,然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积.【详解】解:∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=×=,S矩形PCOD=3,∴四边形PAOB的面积=3--=1故答案为:1.【点睛】本题考查了反比函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.16、-3或4【分析】利用新定义得到,整理得到,然后利用因式分解法解方程.【详解】根据题意得,,,,或,所以.故答案为或.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.17、【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE绕点A旋转60°至△AGF的位置,连接EF,GC,BG,过点G作BC的垂线交CB的延长线于点M.设正方形的边长为2m,∵四边形ABCD为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE绕点A旋转60°至△AGF,∴,∴△AEF和△ABG为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC,∴GC=,∵∠GBM=90°-∠ABG=30°,∴在Rt△BGM中,GM=m,BM=,Rt△GMC中,勾股可得,即:,解得:,∴边长为.故答案为:.【点睛】本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC是解决此题的关键.18、【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)欲证明FG=EG,只要证明△AFG≌△CEG即可解决问题;
(2)先根据等角的三角函数得tanB==tan∠HAF==,则AF=CE=3,由cos∠C==,可得结论.【详解】解:(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FAG=∠ECG,在△AFG和△CEG中,∵,∴△AFG≌△CEG(AAS),∴AG=CG,∴G为AC中点;(2)解:∵EF⊥BC,AD∥BC,∴AF⊥HF,∠HAF=∠B,∴∠AFH=90°,Rt△AFH中,tanB==tan∠HAF==,∴=,∵FH=4,∴AF=CE=3,Rt△CEG中,cos∠C==,∴,∴AG=CG=.【点睛】本题考查了平行四边形的性质、全等三角形的判定和性质,三角函数等知识,(1)解题的关键是正确寻找全等三角形解决问题,(2)利用三角函数列等式是解题的关键.20、门票价格应是20元/人.【分析】根据参观人数×票价=40000元,即可求出每周应限定参观人数以及门票价格.【详解】根据确保每周4万元的门票收入,得xy=40000即x(-500x+1)=40000x2-24x+80=0解得x1=20,x2=4把x1=20,x2=4分别代入y=-500x+1中得y1=2000,y2=10000因为控制参观人数,所以取x=20,答:门票价格应是20元/人.【点睛】考查了一元二次方程的应用,解题的关键是能够根据题意列出方程,难度不大.21、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分别求出点C,顶点D,点A,B的坐标,如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,证明△BCD是直角三角形,即可由三角形的面积公式求出其面积;(2)先求出直线BD的解析式,设P(a,a2﹣2a﹣3),用含a的代数式表示出直线PC的解析式,联立两解析式求出含a的代数式的点F的坐标,过点C作x轴的平行线,交BD于点H,则yH=﹣3,由△CDF与△BEF的面积相等,列出方程,求出a的值,即可写出E,P的坐标.【详解】(1)在y=x2﹣2x﹣3中,当x=0时,y=﹣3,∴C(0,﹣3),当x=﹣=1时,y=﹣4,∴顶点D(1,﹣4),当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角形,∴S△BCD=DC•BC=×3=3;(2)设直线BD的解析式为y=kx+b,将B(3,0),D(1,﹣4)代入,得,解得,k=2,b=﹣6,∴yBD=2x﹣6,设P(a,a2﹣2a﹣3),直线PC的解析式为y=mx﹣3,将P(a,a2﹣2a﹣3)代入,得am=a2﹣2a﹣3,∵a≠0,∴解得,m=a﹣2,∴yPC=(a﹣2)x﹣3,当y=0时,x=,∴E(,0),联立,解得,,∴F(,),如图2,过点C作x轴的平行线,交BD于点H,则yH=﹣3,∴H(,﹣3),∴S△CDF=CH•(yF﹣yD),S△BEF=BE•(﹣yF),∴当△CDF与△BEF的面积相等时,CH•(yF﹣yD)=BE•(﹣yF),即×(+4)=(﹣3)(﹣),解得,a1=4(舍去),a2=,∴E(5,0),P(,﹣).【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知二次函数的图像与性质、一次函数的性质及三角形面积的求解.22、(1),顶点D(1,);(1)C(,0)或(,0)或(,0);(2)【解析】(1)抛物线的顶点D的横坐标是1,则x1,抛物线过A(0,﹣2),则:函数的表达式为:y=ax1+bx﹣2,把B点坐标代入函数表达式,即可求解;(1)分AB=AC、AB=BC、AC=BC,三种情况求解即可;(2)由S△PAB•PH•xB,即可求解.【详解】(1)抛物线的顶点D的横坐标是1,则x1①,抛物线过A(0,﹣2),则:函数的表达式为:y=ax1+bx﹣2,把B点坐标代入上式得:9=15a+5b﹣2②,联立①、②解得:a,b,c=﹣2,∴抛物线的解析式为:yx1x﹣2.当x=1时,y,即顶点D的坐标为(1,);(1)A(0,﹣2),B(5,9),则AB=12,设点C坐标(m,0),分三种情况讨论:①当AB=AC时,则:(m)1+(﹣2)1=121,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0);②当AB=BC时,则:(5﹣m)1+91=121,解得:m=5,即:点C坐标为(5,0)或(5﹣1,0);③当AC=BC时,则:5﹣m)1+91=(m)1+(﹣2)1,解得:m=,则点C坐标为(,0).综上所述:存在,点C的坐标为:(±4,0)或(5,0)或(,0);(2)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣2,把点B坐标代入上式,9=5k﹣2,则k,故函数的表达式为:yx﹣2,设点P坐标为(m,m1m﹣2),则点H坐标为(m,m﹣2),S△PAB•PH•xB(m1+11m)=-6m1+20m=,当m=时,S△PAB取得最大值为:.答:△PAB的面积最大值为.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.23、1.【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=×AB×OC,即可得答案.【详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=×AB×OC=×4×6=1.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.24、(1)详见解析;(1)详见解析.【分析】(1)分别作出A,C的对应点A1,C1即可得到△A1BC1;
(1)分别作出A,B,C的对应点A1,B1,C1即可得到△A1B1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年户外广告牌租赁合同
- 2024年招商引资居间合同
- 2024年投标承诺函范文
- 2024年三人合伙投资经营简单协议书
- 2024年楼盘代理合同范本
- 2024年无产证房屋转让协议书
- 2024年房地产配套供配电建设规定合同
- 个人住房公积金的借款合同2024年
- 2024年房屋拆迁证买卖合同协议书
- 2024年软件售后服务承诺书范文
- 2022年天水市第一人民医院医护人员招聘考试笔试题库及答案解析
- 2、工程工质量保证体系框图
- 江苏正丹化学 反应尾气综合利用制氮项目环评报告书
- 幼儿园专用活动室使用安排表
- 高压旋喷桩施工工艺与施工方案文献
- DeltaTox急性毒性检测系统用户使用手册演示教学
- 脑出血护理个案
- 《江西省普通高级中学基本办学条件标准(试行)》
- 甲醇锅炉资料
- 二氧化钛实验报告
- 英语特殊疑问句练习题(附答案)
评论
0/150
提交评论