西藏自治区左贡县2024届中考数学全真模拟试卷含解析_第1页
西藏自治区左贡县2024届中考数学全真模拟试卷含解析_第2页
西藏自治区左贡县2024届中考数学全真模拟试卷含解析_第3页
西藏自治区左贡县2024届中考数学全真模拟试卷含解析_第4页
西藏自治区左贡县2024届中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏自治区左贡县2024届中考数学全真模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n) B.3(m+n) C.4n D.4m2.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分3.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形4.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×10105.一个圆锥的底面半径为,母线长为6,则此圆锥的侧面展开图的圆心角是()A.180° B.150° C.120° D.90°6.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A. B. C. D.7.如图是二次函数的部分图象,由图象可知不等式的解集是()A. B. C.且 D.x<-1或x>58.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.109.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.10.下列计算正确的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a2二、填空题(共7小题,每小题3分,满分21分)11.如图,在每个小正方形边长为的网格中,的顶点,,均在格点上,为边上的一点.线段的值为______________;在如图所示的网格中,是的角平分线,在上求一点,使的值最小,请用无刻度的直尺,画出和点,并简要说明和点的位置是如何找到的(不要求证明)___________.12.若代数式的值为零,则x=_____.13.在△ABC中,∠C=90∘,AC=3,BC=4,点D,E,F分别是边AB,AC,BC的中点,则14.因式分解:_______________.15.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm1,S△BQC=15cm1,则图中阴影部分的面积为_____cm1.16.已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数的解析式为______.17.计算:___________.三、解答题(共7小题,满分69分)18.(10分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.(I)旋转中心是点,旋转了(度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.19.(5分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.(1)求证:DC=DE;(2)若AE=1,,求⊙O的半径.20.(8分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|21.(10分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.22.(10分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.23.(12分)如图,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求证:AC=AE+BC.24.(14分)已知,抛物线(为常数).(1)抛物线的顶点坐标为(,)(用含的代数式表示);(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;(3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】

解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.2、C【解析】

解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.故选C.【点睛】本题考查数据分析.3、C【解析】

根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可【详解】解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;B、四个内角都相等的四边形是矩形,故本选项正确;C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;D、四条边都相等的四边形是菱形,故本选项正确.故选C【点睛】此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键4、B【解析】

根据题目中的数据可以用科学记数法表示出来,本题得以解决.【详解】解:3.82亿=3.82×108,故选B.【点睛】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.5、B【解析】

解:,解得n=150°.故选B.考点:弧长的计算.6、C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C7、D【解析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:由图象得:对称轴是x=2,其中一个点的坐标为(1,0),∴图象与x轴的另一个交点坐标为(-1,0).由图象可知:的解集即是y<0的解集,∴x<-1或x>1.故选D.8、A【解析】

作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.【详解】作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|−k|,∴|−k|=1,∵k<0,∴k=−1.故选A.【点睛】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.9、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.10、C【解析】

解:选项A,原式=;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=故选C二、填空题(共7小题,每小题3分,满分21分)11、(Ⅰ)(Ⅱ)如图,取格点、,连接与交于点,连接与交于点.【解析】

(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出是的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于点P,此时的值最小.【详解】(Ⅰ)根据勾股定理得AC=;故答案为:1.(Ⅱ)如图,如图,取格点、,连接与交于点,连接与交于点,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.12、3【解析】由题意得,=0,解得:x=3,经检验的x=3是原方程的根.13、6【解析】

首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.【详解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵点D、E、F分别是边AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=12故答案为:6.【点睛】本题考查了勾股定理和三角形中位线定理.14、x3(y+1)(y-1)【解析】

先提取公因式x3,再利用平方差公式分解可得.【详解】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案为x3(y+1)(y-1).【点睛】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.15、41【解析】试题分析:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴阴影部分的面积为S△EPF+S△EFQ=16+15=41cm1.考点:1、三角形面积,1、平行四边形16、y=【解析】解:设这个反比例函数的表达式为y=.∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴这个反比例函数的解析式为:y=.故答案为y=.点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.17、x+1【解析】

先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.【详解】解:=.故答案是:x+1.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.三、解答题(共7小题,满分69分)18、B60【解析】分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即∠CQP=90,进而得出∠APC的度数.详解:(1)B,60;(2)补全图形如图所示;的大小保持不变,理由如下:设与交于点∵直线是等边的对称轴∴,∵经顺时针旋转后与重合∴,∴∴点在线段的垂直平分线上∵∴点在线段的垂直平分线上∴垂直平分,即∴点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.19、(1)见解析;(2).【解析】

(1)连接OD,由DH⊥AC,DH是⊙O的切线,然后由平行线的判定与性质可证∠C=∠ODB,由圆周角定理可得∠OBD=∠DEC,进而∠C=∠DEC,可证结论成立;(2)证明△OFD∽△AFE,根据相似三角形的性质即可求出圆的半径.【详解】(1)证明:连接OD,由题意得:DH⊥AC,由且DH是⊙O的切线,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半径为.【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.20、-4【解析】分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.详解:原式=-4+1-2×+-1=-4点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.21、证明见解析.【解析】【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.22、(1)证明见解析;(2)【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.试题解析:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D点在⊙O上,∴DE为⊙O的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC•cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB•CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD•cos30°=3,∴S△ODE=OD•DE=×2×=,S△ADE=AE•DE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论