版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市秦岭中学2023-2024学年中考一模数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.如图,在中,点D、E、F分别在边、、上,且,.下列四种说法:①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形.其中,正确的有()个A.1 B.2 C.3 D.42.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.3.如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图不变,左视图不变B.左视图改变,俯视图改变C.主视图改变,俯视图改变D.俯视图不变,左视图改变4.在△ABC中,点D、E分别在边AB、AC上,如果AD=1,BD=3,那么由下列条件能够判断DE∥BC的是()A. B. C. D.5.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为()A.8.1×106 B.8.1×105 C.81×105 D.81×1046.方程的解是()A. B. C. D.7.下列运算正确的是()A.a•a2=a2 B.(ab)2=ab C.3﹣1= D.8.不等式3x≥x-5的最小整数解是()A.-3 B.-2 C.-1 D.29.观察下列图形,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.10.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.12.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=,=,那么等于__(结果用、的线性组合表示).13.若关于的一元二次方程有实数根,则的取值范围是________.14.如图,矩形ABCD中,如果以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,那么的值等于________.(结果保留两位小数)15.分解因式2x2﹣4x+2的最终结果是_____.16.计算:(+)=_____.三、解答题(共8题,共72分)17.(8分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.18.(8分)解不等式组:并把解集在数轴上表示出来.19.(8分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).20.(8分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.21.(8分)计算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.22.(10分)用你发现的规律解答下列问题.┅┅计算.探究.(用含有的式子表示)若的值为,求的值.23.(12分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?24.某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.【详解】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,选项①正确;若∠BAC=90°,∴平行四边形AEDF为矩形,选项②正确;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四边形AEDF为菱形,选项③正确;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,选项④正确,则其中正确的个数有4个.故选D.【点睛】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.2、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.3、A【解析】
分别得到将正方体①移走前后的三视图,依此即可作出判断.【详解】将正方体①移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体①移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。将正方体①移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体①移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。将正方体①移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体①移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。故选A.【点睛】考查了三视图,从几何体的正面,左面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.4、D【解析】
如图,∵AD=1,BD=3,∴,当时,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.5、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】810000=8.1×1.
故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、D【解析】
按照解分式方程的步骤进行计算,注意结果要检验.【详解】解:经检验x=4是原方程的解故选:D【点睛】本题考查解分式方程,注意结果要检验.7、C【解析】
根据同底数幂的乘法法则对A进行判断;根据积的乘方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断.【详解】解:A、原式=a3,所以A选项错误;B、原式=a2b2,所以B选项错误;C、原式=,所以C选项正确;D、原式=2,所以D选项错误.故选:C.【点睛】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.8、B【解析】
先求出不等式的解集,然后从解集中找出最小整数即可.【详解】∵3x≥x-5,∴3x-x≥-5,∴x≥-5∴不等式3x≥x-5的最小整数解是x=-2.故选B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.9、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、既不是轴对称图形,也不是中心对称图形.故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、D【解析】
摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.故选D.【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.12、【解析】
根据三角形法则求出即可解决问题;【详解】如图,∵=,=,∴=+=-,∵BD=BC,∴=.故答案为.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.13、【解析】
由题意可得,△=9-4m≥0,由此求得m的范围.【详解】∵关于x的一元二次方程x2-3x+m=0有实数根,∴△=9-4m≥0,求得m≤.故答案为:【点睛】本题考核知识点:一元二次方程根判别式.解题关键点:理解一元二次方程根判别式的意义.14、3.1【解析】分析:由题意可知:BC的长就是⊙O的周长,列式即可得出结论.详解:∵以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,∴BC的长就是⊙O的周长,∴π•AB=BC,∴=π≈3.1.故答案为3.1.点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC的长就是⊙O的周长.15、1(x﹣1)1【解析】
先提取公因式1,再根据完全平方公式进行二次分解.【详解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1.故答案为:1(x﹣1)1【点睛】本题考查提公因式法与公式法的综合运用,难度不大.16、1.【解析】
去括号后得到答案.【详解】原式=×+×=2+1=1,故答案为1.【点睛】本题主要考查了去括号的概念,解本题的要点在于二次根式的运算.三、解答题(共8题,共72分)17、(1);(2)【解析】
(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,∴甲投放了一袋是餐厨垃圾的概率是,故答案为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为=.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18、不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.【解析】试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.试题解析:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:.考点:解一元一次不等式组;在数轴上表示不等式的解集.点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19、(1).(2)公平.【解析】
试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.20、(8+8)m.【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【详解】在Rt△EBC中,有BE=EC×tan45°=8m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=8+8(m).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.21、【解析】
直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【详解】原式.【点睛】考核知识点:三角函数混合运算.正确计算是关键.22、解:(1);(2);(3)n=17.【解析】
(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道闸系统维保合同协议书
- 高三心理健康课程设计
- 2024年摩托车发电机曲轴轴承项目可行性研究报告
- 2024至2030年中国八角桌数据监测研究报告
- 2024年中国车轮螺栓市场调查研究报告
- 2024年中国聚酯家具市场调查研究报告
- 中国酸梅保健酒行业市场现状供需分析及重点企业投资评估规划分析研究报告(2024-2030版)
- 中国萜类化合物行业市场现状分析及竞争格局与投资发展研究报告(2024-2030版)
- 中国聚氯乙烯绝缘电力电缆行业营销策略及发展前景研究报告(2024-2030版)
- 中国缝纫机械行业运营形势与盈利前景预测研究报告(2024-2030版)
- 内蒙古的特色美食
- 招投标-招投标管理
- 售后工程师热水系统维护培训
- 项目管理机构及人员配备表
- 空乘大学生职业生涯规划
- 使用电器安全教育课件
- 动物的生长激素与动物发育
- 《实名认证》课件
- 语文教学之学理
- 餐饮创业湘菜计划书
- 销售意识培训课件
评论
0/150
提交评论