2019年北师大版七年级下册数学期末复习:几何压轴题训练_第1页
2019年北师大版七年级下册数学期末复习:几何压轴题训练_第2页
2019年北师大版七年级下册数学期末复习:几何压轴题训练_第3页
2019年北师大版七年级下册数学期末复习:几何压轴题训练_第4页
2019年北师大版七年级下册数学期末复习:几何压轴题训练_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019年北师大版七年级下册期末复习:几何压轴题训练1.(2017秋•石景山区期末)如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.2.(2018•九龙坡区校级模拟)如图所示,已知AB∥CD,AB∥EF,若CE平分∠BCD,且∠ABC=52°,求∠CEF的度数.3.(2018秋•九龙坡区校级期中)如图,AB∥CD,直线EF与AB,CD分别交于M、N两点,过点M作MG⊥MN交CD于G点,过点G作GH平分∠MGD,若∠EMB=40°,求∠MGH的度数.4.(2018秋•沙坪坝区校级期中)如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A-∠B=8°,求∠BDE的度数.

5.(2018春•庐阳区期末)如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.

(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;

(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.

(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.

6.(2017秋•确山县期末)如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.7.(2018春•泰山区期中)如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.8.(2018秋•上杭县期中)如图,点D在△ABC的边AB上,且∠ACD=∠A.

(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);

(2)在(1)的条件下,求证:DE∥AC.

9.(2018春•相城区期中)将一副直角三角尺BAC和ADE如图放置,其中∠BAC=∠ADE=90°,∠BCA=30°,∠AED=45°,若∠AFD=75°,试判断AE与BC的位置关系,并说明理由.10.(2018春•容县期中)如图,直线AB,CD相交于点O,OA平分∠EOC.已知∠DOE=2∠AOC,求证:OE⊥CD.

11.(2018春•鱼台县期中)课题学习:平行线的“等角转化”功能.

阅读理解:

如图1,已知点A是BC外一点,连接AB,AC.

求∠BAC+∠B+∠C的度数.

(1)阅读并补充下面推理过程

解:过点A作ED∥BC,所以∠B=∠EAB,∠C=.

又因为∠EAB+∠BAC+∠DAC=180°,

所以∠B+∠BAC+∠C=180°

解题反思:

从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.

方法运用:

(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)

深化拓展:

(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.

12.(2018秋•连城县期中)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=70°,求:∠D的度数.13.(2017秋•固始县期末)如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置,若∠DEF=75°,则∠AED′等于多少?

14.(2018秋•沙坪坝区校级月考)如图,MN∥PQ,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C.过点B作BD平分∠ABC交AC于点D,若∠NAC=32°,求∠ADB的度数.15.(2017秋•洛宁县期末)观察,在如图所示的各图中找对顶角(不含平角):

(1)如图a,图中共有对对顶角.

(2)如图b,图中共有对对顶角.

(3)如图c,图中共有对对顶角

(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?

(5)若有2000条直线相交于一点,则可形成多少对对顶角?16.(2017秋•孟津县期末)如图,AB、CD相交于点O,OE是∠AOD的平分找,∠AOC=25°,求∠BOE的度数.17.(2018春•长白县期中)如图所示,已知直线DE∥BC,GF⊥AB于点F,∠1=∠2,判断CD与AB的位置关系.并说明理由.

18.(2017秋•永安市期末)直线AB、CD被直线EF所截,AB∥CD,点P是平面内一动点.设∠PFD=∠1,∠PEB=∠2,∠FPE=∠α.

(1)若点P在直线CD上,如图①,∠α=50°,则∠1+∠2=°;

(2)若点P在直线AB、CD之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明;

(3)若点P在直线CD的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由.

19.(2017秋•辉县市期末)如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.20.(2018春•罗庄区期中)如图,已知AB∥CD,EF∥MN,∠1=115°.

(1)求∠2和∠4的度数;

(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来.

(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的2倍多6°,求这两个角的大小.21.(2017秋•洛宁县期末)如图,直线AB∥CD,EF⊥CD,F为垂足,∠GEF=30°,求∠1的度数.22.(2018春•奉贤区期中)如图,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等吗?请说明理由.

请完成填空并补充完整.

解:因为∠1+∠2=180°(已知)

又因为∠2+∠=180°(邻补角的意义)

所以∠1=∠()#JB23.(2018春•兰陵县期中)(1)探究:如图1,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.

(2)应用:如图2,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,求∠DEF的度数.

24.(2018秋•綦江区校级月考)如图:已知EF∥AD,∠1=∠2,∠AGD=108°.求∠BAC的度数.25.(2017秋•渝中区校级期末)如图1,已知A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC.

(1)求∠DOE的度数;

(2)如图2,在∠AOD内引一条射线OF⊥OC,其他不变,设∠DOF=ao(oo<a<90o).

a.求∠AOF的度数(用含a的代数式表示);

b.若∠BOD是∠AOF的2倍,求∠DOF的度数.

26.(2018•九龙坡区校级模拟)如图,AB∥CD,点E在AB上,点F在CD上,连接EF,EH平分∠BEF,交CD于点H,过F作FG⊥EF,交EH于点G,若∠G=32°,求∠HFG的度数.27.(2018春•大田县期中)如图,如果∠1=∠2,那么图中哪两条线段平行?请说明理由.28.(2018春•大田县期中)如图,AB∥CD,直线EF交AB于点G,交CD于点H,HM⊥CD于点H,如果∠1=48°,求∠2的度数.

29.(2018春•杏花岭区校级期中)如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.

(1)∠CBD=

(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=

(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.30.(2018秋•宁阳县期中)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.31.(2017秋•南召县期末)阅读理解

如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.

(1)阅读并补充下面推理过程

解:过点A作ED∥BC

∴∠B=∠,∠C=∠.

又∵∠EAB+∠BAC+∠DAC=180°(平角定义)

∴∠B+∠BAC+∠C=180°

从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决

(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.

小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:

(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.

①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为°.

②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为°(用含n的代数式表示)

32.(2018春•西城区校级期中)如图,∠1=∠2,AB∥EF,求证:∠3=∠4.33.(2017秋•惠阳区期末)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.

34.(2017秋•南召县期末)操作:如图,直线AB与CD交于点O,按要求完成下列问题.

(1)用量角器量得∠AOC=度.AB与CD的关系可记作.

(2)画出∠BOC的角平分线OM,∠BOM=∠=度.

(3)在射线OM上取一点P,画出点P到直线AB的距离PE.

(4)如图若按“上北下南左西右东”的方位标记,请画出表示“南偏西30°”的射线OF.35.(2018春•北海期末)如图,直线AB,CD,EF相交于点O,∠AOE:∠AOD=1:3,∠COB:∠DOF=3:4,求∠DOE的度数.36.(2017秋•淅川县期末)观察发现:已知AB∥CD,点P是平面上一个动点.当点P在直线AB、CD的异侧,且在BC(不与点B、C重合)上时,如图(1),容易发现:∠ABP+∠DCP=∠BPC.

拓展探究:(1)当点P位于直线AB、CD的异侧,且在BC左侧时,如图(2),∠ABP、∠DCP、∠BPC之间有何关系?并说明理由.

(2)当点P位于直线AB、CD的异侧,且在BC右侧时,如图(3),直接写出∠ABP、∠DCP、∠BPC之间关系.

(3)当点P位于直线AB、CD的同侧,如图(4),直接写出∠ABP、∠DCP、∠BPC之间关系.

37.(2018春•上饶县期末)(1)如图1,AM∥CN,求证:

①∠MAB+∠ABC+∠BCN=360°;

②∠MAE+∠AEF+∠EFC+∠FCN=540°;

(2)如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.

38.(2017秋•金牛区校级期末)如图,已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论