版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省徐州市锥宁县2025届九年级数学第一学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.某微生物的直径为0.000005035m,用科学记数法表示该数为()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣52.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形 B.矩形 C.正三角形 D.平行四边形4.某药品原价为100元,连续两次降价后,售价为64元,则的值为()A.10 B.20 C.23 D.365.⊙O的半径为3,点P到圆心O的距离为5,点P与⊙O的位置关系是()A.无法确定 B.点P在⊙O外 C.点P在⊙O上 D.点P在⊙O内6.向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第秒 B.第秒 C.第秒 D.第秒7.如图,将直尺与含30°角的三角尺放在一起,若∠1=25°,则∠2的度数是()A.30° B.45° C.55° D.60°8.已知二次函数的图象如图所示,下列结论:①;②;③;④.其中正确的结论是()A.①② B.①③ C.①③④ D.①②③9.下列四种图案中,不是中心对称图形的为()A. B. C. D.10.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.将方程化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为____.12.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.13.如图,在半径为2的⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP于点F.①弦AB的长度为_____;②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.14.对于实数,定义运算“◎”如下:◎.若◎,则_____.15.已知,且,则的值为__________.16.已知是方程的一个根,则代数式的值为__________.17.如图,在反比例函数位于第一象限内的图象上取一点P1,连结OP1,作P1A1⊥x轴,垂足为A1,在OA1的延长线上截取A1B1=OA1,过B1作OP1的平行线,交反比例函数的图象于P2,过P2作P2A2⊥x轴,垂足为A2,在OA2的延长线上截取A2B2=B1A2,连结P1B1,P2B2,则的值是.18.在一个不透明的袋子中有5个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球不放回,混合均匀后再摸出一个球,两次都摸到红球的概率是________.三、解答题(共66分)19.(10分)已知关于x的方程x2+ax+16=0,(1)若这个方程有两个相等的实数根,求a的值(2)若这个方程有一个根是2,求a的值及另外一个根20.(6分)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)21.(6分)如图,利用尺规,在△ABC的边AC下方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD=AB.(尺规作图要求保留作图痕迹,不写作法)22.(8分)已知抛物线(是常数)经过点.(1)求该抛物线的解析式和顶点坐标.(2)若点在抛物线上,且点关于原点的对称点为.①当点落在该抛物线上时,求的值;②当点落在第二象限内,取得最小值时,求的值.23.(8分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付元,求关于的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?24.(8分)如图1,若要建一个长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.求:(1)若鸡场面积150平方米,鸡场的长和宽各为多少米?(2)鸡场面积可能达到200平方米吗?(3)如图2,若在鸡场内要用竹篱笆加建一道隔栏,则鸡场最大面积可达多少平方米?25.(10分)在平面直角坐标系中,抛物线与轴的交点为A,B(点A在点B的左侧).(1)求点A,B的坐标;(2)横、纵坐标都是整数的点叫整点.①直接写出线段AB上整点的个数;②将抛物线沿翻折,得到新抛物线,直接写出新抛物线在轴上方的部分与线段所围成的区域内(包括边界)整点的个数.26.(10分)一次函数y=k1x+b和反比例函数的图象相交于点P(m−1,n+1),点Q(0,a)在函数y=k1x+b的图象上,且m,n是关于x的方程ax2−(3a+1)x+2(a+1)=0的两个不相等的整数根(其中a为整数),求一次函数和反比例函数的解析式.
参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:0.000005035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.2、D【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,纵坐标为:y==﹣2a﹣,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.3、B【分析】中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:等腰梯形、正三角形只是轴对称图形,矩形既是中心对称图形又是轴对称图形,平行四边形只是中心对称图形,故选B【点睛】本题考查中心对称图形和轴对称图形,本题属于基础应用题,只需学生熟练掌握中心对称图形和轴对称图形的定义,即可完成.4、B【解析】根据题意可列出一元二次方程100(1-)²=64,即可解出此题.【详解】依题意列出方程100(1-)²=64,解得a=20,(a=180,舍去)故选B.【点睛】此题主要考察一元二次方程的应用,依题意列出方程是解题的关键.5、B【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【详解】解:∵OP=5>3,
∴点P与⊙O的位置关系是点在圆外.
故选:B.【点睛】本题主要考查了点与圆的位置关系,理解并掌握点和圆的位置关系与数量之间的等价关系是解题的关键.6、C【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,∴抛物线的对称轴为:秒,∵第12秒距离对称轴最近,∴上述时间中,第12秒时炮弹高度最高;故选:C.【点睛】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.7、C【分析】通过三角形外角的性质得出∠BEF=∠1+∠F,再利用平行线的性质∠2=∠BEF即可.【详解】∵∠BEF是△AEF的外角,∠1=25°,∠F=30°,∴∠BEF=∠1+∠F=55°,∵AB∥CD,∴∠2=∠BEF=55°,故选:C.【点睛】本题主要考查平行线的性质及三角形外角的性质,掌握三角形外角的性质及平行线的性质是解题的关键.8、C【分析】由抛物线开口方向得到a>0,由抛物线的对称轴方程得到b=-2a,则可对①②进行判断;利用判别式的意义可对③进行判断;利用平方差公式得到(a+b)2-b2=(a+b-b)(a+b+b),然后把b=-2a代入可对④进行判断.【详解】∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=-=1,
∴b=-2a<0,所以①正确;
∴b+2a=0,所以②错误;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,所以③正确;
∵(a+b)2-b2=(a+b-b)(a+b+b)=a(a+2b)=a(a-4a)=-3a2<0,
∴(a+b)2<b2,所以④正确.
故选:C.【点睛】考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.9、D【分析】根据中心对称图形的定义逐个判断即可.【详解】解:A、是中心对称图形,故本选项不符合题意;
B、是中心对称图形,故本选项不符合题意;
C、是中心对称图形,故本选项符合题意;
D、不是中心对称图形,故本选项符合题意;故选D.【点睛】本题考查了对中心对称图形的定义,判断中心对称图形的关键是旋转180°后能够重合.能熟知中心对称图形的定义是解此题的关键.10、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为=.故选:A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.二、填空题(每小题3分,共24分)11、5,.【分析】一元二次方程化为一般形式后,找出一次项系数与常数项即可.【详解】解:方程整理得:,则一次项系数、常数项分别为5,;故答案为:5,.【点睛】此题考查了一元二次方程的一般形式,其一般形式为.12、1【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.13、2.-1【分析】①在Rt△AOE中,解直角三角形求出AE即可解决问题.②取AC的中点H,连接OH,OF,HF,求出OH,FH,根据OF≥FH-OH,即,由此即可解决问题.【详解】解:①如图,连接OA.∵OA=OC=2,∴∠OCA=∠OAC=30°,∴∠AOE=∠OAC+∠ACO=60°,∴AE=OA•sin60°=,∵OE⊥AB,∴AE=EB=,∴AB=2AE=2,故答案为2.②取AC的中点H,连接OH,OF,HF,∵OA=OC,AH=HC,∴OH⊥AC,∴∠AHO=90°,∵∠COH=30°,∴OH=OC=1,HC=,AC=2,∵CF⊥AP,∴∠AFC=90°,∴HF=AC=,∴OF≥FH﹣OH,即OF≤﹣1,∴OF的最小值为﹣1.故答案为﹣1.【点睛】本题考查轨迹,圆周角定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题.14、-3或4【分析】利用新定义得到,整理得到,然后利用因式分解法解方程.【详解】根据题意得,,,,或,所以.故答案为或.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.15、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.16、【分析】根据方程的根的定义,得,结合完全平方公式,即可求解.【详解】∵是方程的一个根,∴,即:∴=1+1=1.故答案是:1.【点睛】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键.17、【详解】解:设P1点的坐标为(),P2点的坐标为(b,)∵△OP1B1,△B1P2B2均为等腰三角形,
∴A1B1=OA1,A2B2=B1A2,
∴OA1=a,OB1=2a,B1A2=b-2a,B1B2=2(b-2a),
∵OP1∥B1P2,
∴∠P1OA1=∠A2B1P2,
∴Rt△P1OA1∽Rt△P2B1A2,
∴OA1:B1A2=P1A1:P2A2,a:(b-2a)=整理得a2+2ab-b2=0,解得:a=()b或a=()b(舍去)∴B1B2=2(b-2a)=(6-4)b,∴故答案为:【点睛】该题较为复杂,主要考查学生对相似三角形的性质和反比例函数上的点的坐标与几何图形之间的关系.18、【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.【详解】画树状图图如下:∴一共有20种情况,有6种情况两次都摸到红球,∴两次都摸到红球的概率是.故答案为:.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、(1)a=1或﹣1;(2)a=﹣10,方程的另一个根为1.【分析】(1)由题意可得方程的判别式△=0,由此可得关于a的方程,解方程即得结果;(2)把x=2代入原方程即可求出a,然后再解方程即可求出方程的另一个根.【详解】解:(1)∵方程x2+ax+16=0有两个相等的实数根,∴a2-4×1×16=0,解得a=1或﹣1;(2)∵方程x2+ax+16=0有一个根是2,∴22+2a+16=0,解得a=﹣10;此时方程为x2﹣10x+16=0,解得x1=2,x2=1;∴a=﹣10,方程的另一个根为1.【点睛】本题考查了一元二次方程的解、一元二次方程的解法以及根的判别式等知识,属于基础题目,熟练掌握上述知识是解题的关键.20、(1)证明见解析(2)2【解析】试题分析:(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.试题解析:(1)∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.考点:1.矩形的性质;2.菱形的判定与性质3.三角函数.21、作图见解析,证明见解析.【分析】根据作一个角等于已知角的作法画出∠CAE并截取AD=BC即可画出图形,利用SAS即可证明△ACB≌△CAD,可得CD=AB.【详解】如图所示:∵AC=CA,∠ACB=∠CAD,AD=CB,∴△ACB≌△CAD(SAS),∴CD=AB.【点睛】本题考查尺规作图——作一个角等于已知角及全等三角形的判定与性质,正确作出图形并熟练掌握全等三角形的判定定理是解题关键.22、(1),顶点的坐标为(1,-4);(2)①,;②.【分析】(1)把坐标代入求出解析式,再化为顶点式即可求解;(2)①由对称性可表示出P’的坐标,再由P和P’都在抛物线上,可得到m的方程,即可求出m的值;②由点P’在第二象限,可求出t的取值,利用两点间的距离公式可用t表示,再由带你P’在抛物线上,可消去m,整理得到关于t的二次函数,利用二次函数的性质即可求出最小值时t的值,则可求出m的值.【详解】(1)∵抛物线经过点,∴,解得,∴抛物线的解析式为.∵,∴顶点的坐标为.(2)①由点在抛物线上,有.∵关于原点的对称点为,有.∴,即,∴,解得,.②由题意知在第二象限,∴,,即,.则在第四象限.∵抛物线的顶点坐标为,∴.过点作轴,为垂足,则.∵,,∴,.当点和不重合时,在中,.当点和重合时,,,符合上式.∴,即.记,则,∴当时,取得最小值.把代入,得,解得,,由,可知不符合题意,∴.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的性质.23、(1)每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)购买小红旗袋恰好配套;(3)需要购买国旗图案贴纸和小红旗各48,60袋,总费用元.【解析】(1)设每袋国旗图案贴纸为元,则有,解得,检验后即可求解;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得;(3)如果没有折扣,,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元.【详解】(1)设每袋国旗图案贴纸为元,则有,解得,经检验是方程的解,∴每袋小红旗为元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得,答:购买小红旗袋恰好配套;(3)如果没有折扣,则,依题意得,解得,当时,则,即,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元.【点睛】本题考查分式方程,一次函数的应用,能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.24、(1)长为15米,宽为10米;(2)不可能达到200平方米;(3)【分析】(1)若鸡场面积150平方米,求鸡场的长和宽,关键是用一个未知数表示出长或宽,并注意去掉门的宽度;(2)求二次函数的最值问题,列出面积的关系式化为顶点式,确定函数最大值与200的大小关系,即可得到答案;(3)此题中首先设出鸡场的面积和宽,列函数式时要注意墙宽有三条道,所以鸡场的长要用篱笆的周长减去3个宽再加上大门的宽2米,再求函数式的最大值.【详解】(1)设宽为x米,则:x(33﹣2x+2)=150,解得:x1=10,x2=(不合题意舍去),∴长为15米,宽为10米;(2)设面积为w平方米,则:W=x(33﹣2x+2),变形为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024个人合同合作协议范本
- 2024工艺品买卖合同范本
- 2024劳动合同法中英文对照上
- 联营创业合同书
- 2024年二手车交易协议
- 户外广告牌租用协议
- 2024房屋装修合同写房屋装修合同协议清单样式
- 2024工程承揽协议合同
- 2024子女抚养协议书
- 2024车辆买卖合同范本大全
- 《人行自动门安全要求》标准
- 广铁集团校园招聘机考题库
- 第一章、总体概述:施工组织总体设想、工程概述、方案针对性及施工标段划分
- 2024-2030年中国语言服务行业发展规划与未来前景展望研究报告
- 2024-2030年白玉蜗牛养殖行业市场发展现状及发展前景与投资机会研究报告
- HGT 2902-2024《模塑用聚四氟乙烯树脂》
- 2024 年上海市普通高中学业水平等级性考试 物理 试卷
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
- 计量基础知识考核试题及参考答案
- 眼科学基础病例分析
- 混合痔中医护理 方案
评论
0/150
提交评论