2025届山东省日照市高新区中学九年级数学第一学期期末质量检测试题含解析_第1页
2025届山东省日照市高新区中学九年级数学第一学期期末质量检测试题含解析_第2页
2025届山东省日照市高新区中学九年级数学第一学期期末质量检测试题含解析_第3页
2025届山东省日照市高新区中学九年级数学第一学期期末质量检测试题含解析_第4页
2025届山东省日照市高新区中学九年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省日照市高新区中学九年级数学第一学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.反比例函数与在同一坐标系的图象可能为()A. B. C. D.2.如图,与相似,且,则下列比例式中正确的是()A. B. C. D.3.若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9的值是()A.5B.﹣1C.4D.184.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为().A.-1 B.2 C.-1或2 D.-1或2或15.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±6.若,,则以为根的一元二次方程是()A. B.C. D.7.如图,在4×4的网格中,点A,B,C,D,H均在网格的格点上,下面结论:①点H是△ABD的内心②点H是△ABD的外心③点H是△BCD的外心④点H是△ADC的外心其中正确的有()A.1个 B.2个 C.3个 D.4个8.如图工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间线段最短 B.两点确定一条直线C.三角形具有稳定性 D.长方形的四个角都是直角9.如图,在正方形网格中,线段A′B′是线段AB绕某点顺时针旋转一定角度所得,点A′与点A是对应点,则这个旋转的角度大小可能是()A.45° B.60° C.90° D.135°10.从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是()A. B. C. D.11.我们知道,一元二次方程可以用配方法、因式分解法或求根公式进行求解.对于一元三次方程ax3+bx2+cx+d=0(a,b,c,d为常数,且a≠0)也可以通过因式分解、换元等方法,使三次方程“降次”为二次方程或一次程,进而求解.这儿的“降次”所体现的数学思想是()A.转化思想 B.分类讨论思想C.数形结合思想 D.公理化思想12.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在矩形ABCD中,,对角线AC,BD交于点O,点M,N分别为OB,OC的中点,则的面积为____________.14.经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是_____.15.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD=_____.16.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.17.如图,⊙O是△ABC的外接圆,∠A=60°,BC=6,则⊙O的半径是_____.18.如图,在半径为5的中,弦,,垂足为点,则的长为__________.三、解答题(共78分)19.(8分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3),(1)①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出△ABC绕原点O逆时针旋转90°得到的△A2B2C2,写出点C2的坐标;(2)若△ABC上任意一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则点Q的坐标为________.(用含m,n的式子表示)20.(8分)已知关于x的不等式组恰有两个整数解,求实数a的取值范围.21.(8分)在平面直角坐标系中,已知,.(1)如图1,求的值.(2)把绕着点顺时针旋转,点、旋转后对应的点分别为、.①当恰好落在的延长线上时,如图2,求出点、的坐标.②若点是的中点,点是线段上的动点,如图3,在旋转过程中,请直接写出线段长的取值范围.22.(10分)已知:如图,在半径为的中,、是两条直径,为的中点,的延长线交于点,且,连接。.(1)求证:;(2)求的长.23.(10分)如图,一次函数y=kx+b(b=0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣3,4),点B的坐标为(6,n)(1)求反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)若kx+b<,直接写出x的取值范围.24.(10分)如图,一次函数的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(-3,4),点B的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)在x轴上是否存在点P,使△APC是直角三角形.若存在,求出点P的坐标;若不存在,请说明理由.25.(12分)如图,已知矩形的边,,点、分别是、边上的动点.(1)连接、,以为直径的交于点.①若点恰好是的中点,则与的数量关系是______;②若,求的长;(2)已知,,是以为弦的圆.①若圆心恰好在边的延长线上,求的半径:②若与矩形的一边相切,求的半径.26.用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,“幸福”小区为了方便住在A区、B区、和C区的居民(A区、B区、和C区之间均有小路连接),要在小区内设立物业管理处P.如果想使这个物业管理处P到A区、B区、和C区的距离相等,应将它建在什么位置?请在图中作出点P.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.2、D【分析】利用相似三角形性质:对应角相等、对应边成比例,可得结论.【详解】由题意可得,,所以,故选D.【点睛】在书写两个三角形相似时,注意顶点的位置要对应,即若,则说明点A的对应点为点,点B的对应点,点C的对应点为点.3、A【解析】∵抛物线y=﹣x2+bx+c经过点(﹣2,3),∴-4-2b+c=3,即c-2b=7,∴2c-4b-9=2(c-2b)-9=14-9=5.故选A.4、D【分析】当a-1=0,即a=1时,函数为一次函数,与x轴有一个交点;当a﹣1≠0时,利用判别式的意义得到,再求解关于a的方程即可得到答案.【详解】当a﹣1=0,即a=1,函数为一次函数y=-4x+2,它与x轴有一个交点;当a﹣1≠0时,根据题意得解得a=-1或a=2综上所述,a的值为-1或2或1.故选:D.【点睛】本题考察了一次函数、二次函数图像、一元二次方程的知识;求解的关键是熟练掌握一次函数、二次函数的性质,从而完成求解.5、C【解析】x2+6x+4=0,移项,得x2+6x=-4,配方,得x2+6x+32=-4+32,即(x+3)2=5.故选C.6、B【分析】由已知条件可得出,再根据一元二次方程的根与系数的关系,,分别得出四个方程的两个根的和与积,即可得出答案.【详解】解:∵,∴A.,方程的两个根的和为-3,积为-2,选项错误;B.,方程的两个根的和为3,积为2,选项正确;C.,方程的两个根的和为-3,积为2,选项错误;D.,方程的两个根的和为3,积为-2,选项错误;故选:B.【点睛】本题考查的知识点是根与系数的关键,熟记求根公式是解此题的关键.7、C【分析】先利用勾股定理计算出AB=BC=,AD=,CD=,AC=,再利用勾股定理的逆定理可得到∠ABC=∠ADC=90°,则CB⊥AB,CD⊥AD,根据角平分线定理的逆定理可判断点C不在∠BAD的角平分线上,则根据三角形内心的定义可对①进行判断;由于HA=HB=HC=HD=,则根据三角形外心的定义可对②③④进行判断.【详解】解:∵AB=BC=,AD=,CD=,AC=,∴AB2+BC2=AC2,CD2+AD2=AC2,∴△ABC和△ADC都为直角三角形,∠ABC=∠ADC=90°,∵CB⊥AB,CD⊥AD,而CB≠CD,∴点C不在∠BAD的角平分线上,∴点H不是△ABD的内心,所以①错误;∵HA=HB=HC=HD=,∴点H是△ABD的外心,点H是△BCD的外心,点H是△ADC的外心,所以②③④正确.故选:C.【点睛】本题考查了三角形的内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心和勾股定理.8、C【分析】根据三角形的稳定性,可直接选择.【详解】加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.

故选:C.9、C【分析】如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.【详解】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角,∴旋转角为90°故选:C.【点睛】本题考查了图形的旋转,掌握作图的基本步骤是解题的关键10、B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的两位数是3的倍数的情况,再利用概率公式即可求得答案.【详解】画树状图得:

∵共有12种等可能的结果,组成的两位数是3的倍数的有4种情况,

∴组成的两位数是3的倍数的概率是:.故选:B【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11、A【分析】解高次方程的一般思路是逐步降次,所体现的数学思想就是转化思想.【详解】由题意可知,解一元三次方程的过程是将三次转化为二次,二次转化为一次,从而解题,在解题技巧上是降次,在解题思想上是转化思想.故选:A.【点睛】本题考查高次方程;通过题意,能够从中提取出解高次方程的一般方法,同时结合解题过程分析出所运用的解题思想是解题的关键.12、D【分析】根据轴对称图形与中心对称图形的定义即可判断.【详解】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;C是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【点睛】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.二、填空题(每题4分,共24分)13、【分析】由矩形的性质可推出△OBC的面积为△ABC面积的一半,然后根据中位线的性质可推出△OMN的面积为△OBC面积的,即可得出答案.【详解】∵四边形ABCD为矩形∴∠ABC=90°,BC=AD=4,O为AC的中点,∴又∵M、N分别为OB、OC的中点∴MN=BC,MN∥BC∴△OMN∽△OBC∴∴故答案为:.【点睛】本题考查了矩形的性质,中位线的判定与性质,相似三角形的判定与性质,解题的关键是熟练掌握相似三角形的面积比等于相似比的平方.14、【分析】列举出所有情况,让一辆向左转,一辆向右转的情况数除以总情况数即为所求的可能性.【详解】一辆向左转,一辆向右转的情况有两种,则概率是.【点睛】本题考查了列表法与树状图法,用到的知识点为:可能性=所求情况数与总情况数之比.15、110°.【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.16、3000(1+x)2=1【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:

3000(1+x)2=1,

故答案为:3000(1+x)2=1.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.17、1【分析】作直径CD,如图,连接BD,根据圆周角定理得到∠CBD=90°,∠D=10°,然后利用含30度的直角三角形三边的关系求出CD,从而得到⊙O的半径.【详解】解:作直径CD,如图,连接BD,∵CD为⊙O直径,∴∠CBD=90°,∵∠D=∠A=10°,∴BD=BC=×1=1,∴CD=2BD=12,∴OC=1,即⊙O的半径是1.故答案为1.【点睛】本题主要考查圆周角的性质,解决本题的关键是要熟练掌握圆周角的性质.18、4【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【详解】连接OA,∵AB⊥OP,∴AP=AB=×6=3,∠APO=90°,又OA=5,∴OP===4,故答案为:4.【点睛】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.三、解答题(共78分)19、(1)①见解析,②见解析,点C2的坐标为(-3,1);(2)(-n,m)【分析】(1)①根据关于原点对称的点的坐标特征得到A1、B1、C1的坐标,然后描点即可;

②利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,然后顺次连接,从而得到点C2的坐标;

(2)利用②中对应点的规律写出Q的坐标.【详解】解:(1)①如图,△A1B1C1为所求;②如图,△A2B2C2为所求,点C2的坐标为(-3,1)(2)∵A(0,1)绕原点O逆时针旋转90°的对应点A2(-1,0),B(3,3)绕原点O逆时针旋转90°的对应点B2(-3,3),C(1,3)绕原点O逆时针旋转90°的对应点C2(-3,1),∴点Q的坐标为(-n,m).【点睛】本题考查了作图−−中心对称与旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20、-4≤a<-3.【解析】试题分析:首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a的不等式组求得a的范围.试题解析:解:由5x+2>3(x﹣2)得:x>﹣2,由x≤8﹣x+2a得:x≤4+a.则不等式组的解集是:﹣2<x≤4+a.不等式组只有两个整数解,是﹣2和2.根据题意得:2≤4+a<2.解得:﹣4≤a<﹣3.点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21、(1);(2)①,②;(3)【解析】(1)作AH⊥OB,根据正弦的定义即可求解;(2)作MC⊥OB,先求出直线AB解析式,根据等腰三角形的性质及三角函数的定义求出M点坐标,根据MN∥OB,求出N点坐标;(3)由于点C是定点,点P随△ABO旋转时的运动轨迹是以B为圆心,BP长为半径的圆,故根据点和圆的位置关系可知,当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长.又因为BP的长因点D运动而改变,可先求BP长度的范围.由垂线段最短可知,当BP垂直MN时,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>BN,所以点P与M重合时,BP=BM最长,代入CP=BP+BC求CP的最大值.【详解】(1)作AH⊥OB,∵,.∴H(3,5)∴AH=3,AH=∴==(2)由(1)得A(3,4),又求得直线AB的解析式为:y=∵旋转,∴MB=OB=6,作MC⊥OB,∵AO=BO,∴∠AOB=∠ABO∴MC=MBsin∠ABO=6×=即M点的纵坐标为,代入直线AB得x=∴,∵∠NMB=∠AOB=∠ABO∴MN∥OB,又MN=AB=5,则+5=∴(3)连接BP∵点D为线段OA上的动点,OA的对应边为MN∴点P为线段MN上的动点∴点P的运动轨迹是以B为圆心,BP长为半径的圆∵C在OB上,且CB=OB=3∴当点P在线段OB上时,CP=BP−BC最短;当点P在线段OB延长线上时,CP=BP+BC最长如图3,当BP⊥MN时,BP最短∵S△NBM=S△ABO,MN=OA=5∴MN⋅BP=OB⋅yA∴BP===∴CP最小值=−3=当点P与M重合时,BP最大,BP=BM=OB=6∴CP最大值=6+3=9∴线段CP长的取值范围为.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的运用、旋转的性质、三角函数的应用.22、(1)证明见解析;(1)EM=4.【解析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(1)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度.【详解】(1)连接AC、EB.∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(1)∵DC是⊙O的直径,∴∠DEC=90°,∴DE1+EC1=DC1.∵DE,CD=8,且EC为正数,∴EC=2.∵M为OB的中点,∴BM=1,AM=3.∵AM•BM=EM•CM=EM•(EC﹣EM)=EM•(2﹣EM)=11,且EM>MC,∴EM=4.【点睛】本题考查了相似三角形的判定和性质、圆周角定理、勾股定理的知识点,解答本题的关键是根据已知条件和图形作辅助线.23、(1),y=﹣x+2;(2)9;(3)x>6或﹣3<x<1【分析】(1)根据A的坐标求出反比例函数的解析式,求出B点的坐标,再把A、B的坐标代入y=kx+b,求出一次函数的解析式即可;(2)先求出点C的坐标,再根据三角形的面积公式求出即可;(3)根据A、B的坐标和图象得出即可.【详解】解:(1)把A点的坐标(﹣3,4)代入y=得:m=﹣12,即反比例函数的解析式是y=,把B点的坐标(6,n)代入y=﹣得:n=﹣2,即B点的坐标是(6,﹣2),把A、B的坐标代入y=kx+b得:,解得:k=﹣,b=2,所以一次函数的解析式是y=﹣x+2;(2)设一次函数y=﹣x+2与x轴的交点是C,y=﹣x+2,当y=1时,x=3,即OC=3,∵A(﹣3,4),B(6,﹣2),∴△AOB的面积S=S△AOC+S△BOC==9;(3)当kx+b<时x的取值范围是x>6或﹣3<x<1.【点睛】本题考查了一次函数和反比例函数的综合问题,掌握一次函数和反比例函数的图象和性质、三角形面积公式是解题的关键.24、(1)反比例函数的解析式为y=﹣;一次函数的解析式为y=﹣x+2;(2);(3)存在,满足条件的P点坐标为(﹣3,0)、(﹣,0).【解析】(1)先把代入得到的值,从而确定反比例函数的解析式为;再利用反比例函数解析式确定B点坐标为,然后运用待定系数法确定所求的一次函数的解析式为即可求得.

(3)过A点作轴于,交x轴于,则点的坐标为;再证明利用相似比计算出则,所以点的坐标为,于是得到满足条件的P点坐标.【详解】将代入,得∴反比例函数的解析式为;将代入,得解得将和分别代入得,解得,∴所求的一次函数的解析式为(2)当时,解得:(3)存在.过A点作轴于,交x轴于,如图,点坐标为点的坐标为而即点的坐标为∴满足条件的点坐标为25、(1)①;②1.5;(2)①5;②、,、5.【解析】(1)①根据直径所对的圆周角是直角判断△APQ为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ∽△QBA,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分与矩形的四边分别相切,画出图形,利用切

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论