江苏省南通市如皋市丁堰镇初级中学2025届数学九上期末质量跟踪监视试题含解析_第1页
江苏省南通市如皋市丁堰镇初级中学2025届数学九上期末质量跟踪监视试题含解析_第2页
江苏省南通市如皋市丁堰镇初级中学2025届数学九上期末质量跟踪监视试题含解析_第3页
江苏省南通市如皋市丁堰镇初级中学2025届数学九上期末质量跟踪监视试题含解析_第4页
江苏省南通市如皋市丁堰镇初级中学2025届数学九上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市如皋市丁堰镇初级中学2025届数学九上期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,已知AB是ʘO的直径,点P在B的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C.若⊙O的半径为1.BC=9,则PA的长为()A.8 B.4 C.1 D.52.关于反比例函数图象,下列说法正确的是()A.必经过点 B.两个分支分布在第一、三象限C.两个分支关于轴成轴对称 D.两个分支关于原点成中心对称3.如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于()A.20° B.30° C.40° D.50°4.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是()A.摸出的是白球 B.摸出的是黑球C.摸出的是红球 D.摸出的是绿球5.下列方程中不是一元二次方程的是()A. B. C. D.6.计算的结果是()A. B. C. D.97.近视镜镜片的焦距y(单位:米)是镜片的度数x(单位:度)的函数,下表记录了一组数据,在下列函数中,符合表格中所给数据的是:()(单位:度)…100250400500…(单位:米)…1.000.400.250.20…A.y=x B.y= C.y=﹣x+ D.y=8.如下图形中既是中心对称图形,又是轴对称图形的是()A. B. C. D.9.下列二次根式中,与是同类二次根式的是A. B. C. D.10.如图,⊙是的外接圆,,则的度数为()A.60° B.65° C.70° D.75°11.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.12.若,设,,,则、、的大小顺序为()A. B. C. D.二、填空题(每题4分,共24分)13.已知x1、x2是关于x的方程x2+4x5=0的两个根,则x1x2=_____.14.反比例函数()的图象经过点A,B(1,y1),C(3,y1),则y1_______y1.(填“<,=,>”)15.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为________m.(结果精确到0.1m)16.已知,则的值为_______.17.如图,平行四边形中,,如果,则___________.18.如图,点在反比例函数的图象上,轴,垂足为,且,则__________.三、解答题(共78分)19.(8分)(1)问题发现如图1,在中,,点为的中点,以为一边作正方形,点恰好与点重合,则线段与的数量关系为______________;(2)拓展探究在(1)的条件下,如果正方形绕点旋转,连接,线段与的数量关系有无变化?请仅就图2的情形进行说明;(3)问题解决.当正方形旋转到三点共线时,直接写出线段的长.20.(8分)如图,为的直径,切于点,交的延长线于点,且.(1)求的度数.(2)若的半径为2,求的长.21.(8分)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡米,坡度为;将斜坡的高度降低米后,斜坡改造为斜坡,其坡度为.求斜坡的长.(结果保留根号)22.(10分)开学初,某文具店销售一款书包,每个成本是50元,销售期间发现:销售单价时100元时,每天的销售量是50个,而销售单价每降低2元,每天就可多售出10个,当销售单价为多少元时,每天的销售利润达到4000元?要求销售单价不低于成本,且商家尽量让利给顾客.23.(10分)如图为一机器零件的三视图.(1)请写出符合这个机器零件形状的几何体的名称;(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)24.(10分)如图,为的直径,、为上两点,且点为的中点,过点作的垂线,交的延长线于点,交的延长线于点.(1)求证:是的切线;(2)当,时,求的长.25.(12分)已知关于x的一元二次方程(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为1.当△ABC是等腰三角形时,求k的值26.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是1.(1)求抛物线的解析式及顶点坐标;(1)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.

参考答案一、选择题(每题4分,共48分)1、C【分析】连接OD,利用切线的性质可得∠PDO=90°,再判定△PDO∽△PCB,最后再利用相似三角形的性质列方程解答即可.【详解】解:连接DO∵PD与⊙O相切于点D,∴∠PDO=90°,∵BC⊥PC,∴∠C=90°,∴∠PDO=∠C,∴DO//BC,∴△PDO∽△PCB,∴,设PA=x,则,解得:x=1,∴PA=1.故答案为C.【点睛】本题考查了圆的切线性质以及相似三角形的判定与性质,证得△PDO∽△PCB是解答本题的关键.2、D【分析】把(2,1)代入即可判断A,根据反比例函数的性质即可判断B、C、D.【详解】A.当x=2时,y=-1≠1,故不正确;B.∵-2<0,∴两个分支分布在第二、四象限,故不正确;C.两个分支不关于轴成轴对称,关于原点成中心对称,故不正确;D.两个分支关于原点成中心对称,正确;故选D.【点睛】本题考查了反比例函数的图象与性质,反比例函数(k是常数,k≠0)的图象是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限;当k<0,反比例函数图象的两个分支在第二、四象限.反比例函数图象的两个分支关于原点成中心对称.3、A【解析】由性质性质得,∠D′=∠D=90°,∠4=α,由四边形内角和性质得∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°.【详解】如图,因为四边形ABCD为矩形,所以∠B=∠D=∠BAD=90°,因为矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,所以∠D′=∠D=90°,∠4=α,因为∠1=∠2=110°,所以∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°,所以α=20°.故选:A【点睛】本题考核知识点:旋转角.解题关键点:理解旋转的性质.4、A【分析】个数最多的就是可能性最大的.【详解】解:因为白球最多,所以被摸到的可能性最大.故选A.【点睛】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.5、C【分析】根据一元二次方程的定义进行排除选择即可,一元二次方程的关键是方程中只包含一个未知数,且未知数的指数为2.【详解】根据一元二次方程的定义可知含有一个未知数且未知数的指数是2的方程为一元二次方程,所以A,B,D均符合一元二次方程的定义,C选项展开移项整理后不含有未知数,不符合一元二次方程的定义,所以错误,故选C.【点睛】本题考查的是一元二次方程的定义,熟知此定义是解题的关键.6、D【分析】根据负整数指数幂的计算方法:,为正整数),求出的结果是多少即可.【详解】解:,计算的结果是1.故选:D.【点睛】此题主要考查了负整数指数幂:,为正整数),要熟练掌握,解答此题的关键是要明确:(1)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(2)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.7、B【分析】根据表格数据可得近视镜镜片的焦距y(单位:米)与度数x(单位:度)成反比例,依此即可求解;【详解】根据表格数据可得,100×1=250×0.4=400×0.25=500×0.2=100,所以近视镜镜片的焦距y(单位:米)与度数x(单位:度)成反比例,所以y关于x的函数关系式是y=.故选:B.【点睛】此题主要考查了根据实际问题列反比例函数关系式,关键是掌握反比例函数形如(k≠0).8、B【解析】根据中心对称图形的定义以及轴对称图形的定义进行判断即可得出答案.【详解】A.是轴对称图形,不是中心对称图形,故本选项错误;B.是轴对称图形,也是中心对称图形,故本选项正确;C.是轴对称图形,不是中心对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的定义,根据定义得出图形形状是解决问题的关键.9、C【分析】根据同类二次根式的定义即可判断.【详解】A.=,不符合题意;B.,不符合题意;C.=,符合题意;D.=,不符合题意;故选C.【点睛】此题主要考查同类二次根式的识别,解题的关键是熟知二次根式的性质进行化简.10、C【分析】连接OB,根据等腰三角形的性质和圆周角定理即可得到结论.【详解】连接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180−20−20=140,∴∠A=140×=70,故选:C.【点睛】本题考查了圆周角定理,要知道,同弧所对的圆周角等于它所对圆心角的一半.11、A【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,也是中心对称图形,故本选项符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故答案为A.【点睛】本题考查了中心对称图形和轴对称图形的概念,理解这两个概念是解答本题的关键.12、B【分析】根据,设x=1a,y=7a,z=5a,进而代入A,B,C分别求出即可.【详解】解:∵,设x=1a,y=7a,z=5a,

∴=,

==1,

==1.

∴A<B<C.

故选:B.【点睛】本题考查了比例的性质,根据比例式用同一个未知数得出x,y,z的值进而求出是解题的关键.二、填空题(每题4分,共24分)13、-1【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于x的方程x2+1x5=0的两个根,∴x1x2=-=-1,故答案为:-1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1x2=-.14、>【分析】根据反比例函数的性质得出在每个象限内,y随x的增大而减小,图象在第一、三象限内,再比较即可.【详解】解:由图象经过点A,可知,反比例函数图象在第一、三象限内,y随x的增大而减小,由此可知y1>y1.【点睛】本题考查反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.15、2.3【解析】AB是Rt△ABC的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB的长.【详解】在Rt△ABC中,∴∴即斜坡AB的长为2.3m.故答案为2.3.【点睛】考查解直角三角形的实际应用,熟练掌握锐角三角函数是解题的关键.16、【分析】令连等式的值为k,将a、b、c全部转化为用k表示的形式,进而得出比值.【详解】令则a=6k,b=5k,c=4k则故答案为:.【点睛】本题考查连比式的应用,是一类比较常见的题型,需掌握这种解题方法.17、【分析】由平行四边形的性质可知△AEF∽△CDF,再利用条件可求得相似比,利用面积比等于相似比的平方可求得△CDF的面积.【详解】∵四边形ABCD为平行四边形,∴AB∥CD,∴∠EAF=∠DCF,且∠AFE=∠CFD,∴△AEF∽△CDF,∵AE:EB=1:2∴,∴,∵,∴S△CDF=.故答案为:.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的周长比等于相似比、面积比等于相似比的平方是解题的关键.18、6【分析】根据三角形的面积等于即可求出k的值.【详解】∵由题意得:=3,解得,∵反比例函数图象的一个分支在第一象限,∴k=6,故答案为:6.【点睛】此题考查反比例函数的比例系数k的几何意义,掌握三角形的特点与k的关系是解题的关键.三、解答题(共78分)19、(1);(2)无变化,说明见详解;(3)或【分析】(1)先利用等腰直角三角形的性质得出AB=AD,再得出AD=AF,即可得出结论;

(2)先利用等腰直角三角形和正方形的性质得:,并证明夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分当点E在线段BF上时和当点E在线段BF的延长线上时讨论即可求得线段的长.【详解】解:(1)在Rt△ABC中,AB=AC,

∵D是BC的中点,

∴AD=BC=BD,AD⊥BC,

∴△ABD是等腰直角三角形,

∴AB=AD,

∵正方形CDEF,

∴DE=EF,

当点E恰好与点A重合,

∴AB=AD=AF,即BE=AF,

故答案为:BE=AF;(2)无变化;如图2,在中,∴,∴在正方形中,在中,∴∵∴在和中∴∽∴∴线段和的数量关系无变化.(3)或.当点E在线段BF上时,如图2,∵正方形,由(1)知AB=AD=AF,∴CF=EF=CD=2,在Rt△BCF中,CF=2,BC=4,根据勾股定理得,BF=,∴BE=BF-EF=-2,由(2)得,,∴AF=;当点E在线段BF的延长线上时,如图,同理可得,BF=,BE=BF+EF=+2,∴AF=,综上所述,当正方形旋转到三点共线时,线段的长为或.【点睛】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,解题的键是判断出△ACF∽△BCE.20、(1);(2).【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A,求出∠D=∠COD,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意的半径为2,求出OC=CD=2,根据勾股定理求出BD即可.【详解】解:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,的半径为2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.21、斜坡的长是米.【解析】根据题意和锐角三角函数可以求得的长,进而得到的长,再根据锐角三角函数可以得到的长,最后用勾股定理即可求得的长.【详解】∵,,坡度为,∴,∴,∴,∵,∴,∵,斜坡的坡度为,∴,即,解得,,∴米,答:斜坡的长是米.【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.22、销售单价为70元时,每天的销售利润达到4000元,且商家尽量让利顾客.【分析】根据“单件利润×销售量=总利润”可列一元二次方程求解,结合题意取舍可得【详解】解:设销售单价为x元时,每天的销售利润达到4000元,由题意得,(x﹣50)[50+5(100﹣x)]=4000,解得x1=70,x2=90,因为晨光文具店销售单价不低于成本,且商家尽量让利顾客,所以x2=90不符合题意舍去,故x=70,答:销售单价为70元时,每天的销售利润达到4000元,且商家尽量让利顾客.【点睛】本题主要考查一元二次方程的应用,理解题意确定相等关系,并据此列出方程是解题的关键.23、(1)直三棱柱;(2)【解析】试题分析:(1)有2个视图的轮廓是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么该几何体为三棱柱;(2)根据正三角形一边上的高可得正三角形的边长,表面积=侧面积+2个底面积=底面周长×高+2个底面积.试题解析:(1)符合这个零件的几何体是直三棱柱;(2)如图,△ABC是正三角形,CD⊥AB,CD=2,,在Rt△ADC中,,解得AC=4,∴S表面积=4×2×3+2××4×2=(24+8)(cm2).24、(1)详见解析;(2).【分析】(1)连接,如图,由点为的中点可得,根据可得,可得,于是,进一步即可得出,进而可证得结论;(2)在中,利用解直角三角形的知识可求得半径的长,进而可得AD的长,然后在中利用∠D的正弦即可求出结果.【详解】解:(1)连接,如图,∵点为的中点,∴,∴.∵,∴,∴.∴.∵,∴.∴,即.∴是的切线;(2)在中,∵,∴设,则,则,解得:.∴,,∴.在中,∵,∴.【点睛】本题考查了圆的切线的判定、等腰三角形的性质、平行线的判定和性质以及解直角三角形的知识,属于中档题型,熟练掌握上述知识是解题的关键.25、(5)详见解析(4)或【分析】(5)先计算出△=5,然后根据判别式的意义即可得到结论;(4)先利用公式法求出方程的解为x5=k,x4=k+5,然后分类讨论:AB=k,AC=k+5,当AB=BC或AC=BC时△ABC为等腰三角形,然后求出k的值.【详解】解:(5)证明:∵△=(4k+5)4-4(k4+k)=5>0,∴方程有两个不相等的实数根;(4)解:一元二次方程x4-(4k+5)x+k4+k=0的解为x=,即x5=k,x4=k+5,∵k<k+5,∴AB≠AC.当AB=k,AC=k+5,且AB=BC时,△ABC是等腰三角形,则k=5;当AB=k,AC=k+5,且AC=BC时,△ABC是等腰三角形,则k+5=5,解得k=4,所以k的值为5或4.【点睛】5.根的判别式;4.解一元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论