新教材2024高考数学二轮专题复习分册二探究二方法五构造法_第1页
新教材2024高考数学二轮专题复习分册二探究二方法五构造法_第2页
新教材2024高考数学二轮专题复习分册二探究二方法五构造法_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

方法五构造法构造法就是利用已知条件和结论的特别性构造出新的数学模型,从而简化推理与计算过程,使较困难的数学问题得到简捷的解决,它来源于对基础学问和基本方法的积累,须要从一般的方法原理中进行提炼概括,主动联想,横向类比,从曾经遇到过的类似问题中找寻灵感,构造出相应的函数、概率、几何等详细的数学模型,使问题快速解决.5.(1)[2024·全国甲卷]已知a=,b=cos,c=4sin,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b(2)如图,已知球O的面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于________.对接训练9.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)B.(-1,0)C.(-∞,-1)D.(0,1)10.已知正四面体ABCD的外接球的体积为8π,则这个正四面体的表面积为________.方法五构造法[例5](1)解析:a-c=-4sin=1--.不妨设f(x)=1-x2-=.令h(x)=x-x3-sinx,则h′(x)=1-x2-cosx.令g(x)=1-x2-cosx,则g′(x)=-3x+sinx.当x∈时,sinx<3x,所以当x∈时,g′(x)<0,所以g(x)在上单调递减,所以当x∈时,g(x)<g(0)=0,所以当x∈时,h′(x)<0,所以h(x)在上单调递减.所以当x∈时,h(x)<h(0)=0,所以当x∈时,f(x)<0,所以f<0,即a<c.结合四个选项,解除B,C,D.故选A.(2)解析:如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球O的半径为R,则正方体的体对角线长即为球O的直径,所以CD==2R,所以R=,故球O的体积V==π.答案:Aπ对接训练9.解析:构造函数g(x)=,则g′(x)=,由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0.∴g(1)==0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵g(-x)====g(x),(x≠0)∴g(x)是偶函数,∴当x∈(-∞,-1)时,g(x)<0,从而f(x)>0;当x∈(-1,0)时,g(x)>0,从而f(x)<0.综上,所求x的取值范围是(-∞,-1)故选A.答案:A10.解析:将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示.设正四面体ABCD的外接球的半径为R,则πR3=8π,得R=.∵正四面体的外接球和正方体的外接球是同一个球,∴a=2R=2,∴a=2,∵正四面体ABCD的每条棱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论