湖南省长沙市中学雅培粹校2023-2024学年中考猜题数学试卷含解析_第1页
湖南省长沙市中学雅培粹校2023-2024学年中考猜题数学试卷含解析_第2页
湖南省长沙市中学雅培粹校2023-2024学年中考猜题数学试卷含解析_第3页
湖南省长沙市中学雅培粹校2023-2024学年中考猜题数学试卷含解析_第4页
湖南省长沙市中学雅培粹校2023-2024学年中考猜题数学试卷含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市中学雅培粹校2023-2024学年中考猜题数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为()A.76° B.74° C.72° D.70°2.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)

25

26

27

28

天数

1

1

2

3

则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,273.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm,圆柱的高BC=6cm,圆锥的高CD=3cm,则这个陀螺的表面积是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm24.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.5.已知a-2b=-2,则4-2a+4b的值是()A.0 B.2 C.4 D.86.如果代数式有意义,则实数x的取值范围是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥37.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100° B.80° C.60° D.50°8.下列运算正确的是(

)A.a2·a3﹦a6

B.a3+a3﹦a6

C.|-a2|﹦a2

D.(-a2)3﹦a69.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为(

)A.2cm2

B.3cm2

C.4cm2

D.5cm210.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是()A.cm B.2cm C.2cm D.cm11.若关于x的方程=3的解为正数,则m的取值范围是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣12.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为,则弦CD的长为()A. B.3cm C. D.9cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简代数式(x+1+)÷,正确的结果为_____.14.如图,直线a∥b,直线c分别于a,b相交,∠1=50°,∠2=130°,则∠3的度数为()A.50° B.80° C.100° D.130°15.点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_______b(填“>”或“<”或“=”).16.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR的周长的最小值为_________.17.如图,已知函数y=x+2的图象与函数y=(k≠0)的图象交于A、B两点,连接BO并延长交函数y=(k≠0)的图象于点C,连接AC,若△ABC的面积为1.则k的值为_____.18.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形_____对,有面积相等但不全等的三角形_____对.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.20.(6分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.21.(6分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.22.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.小明和小刚都在本周日上午去游玩的概率为________;求他们三人在同一个半天去游玩的概率.23.(8分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。(保留作图痕迹,不写做法)24.(10分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.(1)①若点在直线上,则点的“理想值”等于_______;②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)25.(10分)如图,AD是△ABC的中线,过点C作直线CF∥AD.(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.26.(12分)已知动点P以每秒2

cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6

cm,试回答下列问题:(1)图(1)中的BC长是多少?(2)图(2)中的a是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b是多少?27.(12分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.【详解】解:∵∠A=56°,∠C=88°,

∴∠ABC=180°-56°-88°=36°,

∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,

∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,

∴∠BDE=180°-18°-88°=74°.

故选:B.【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.2、A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.3、C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.4、D【解析】试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故选D.考点:作图—复杂作图.5、D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故选D.6、C【解析】

根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.7、B【解析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B8、C【解析】

根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【详解】a2·a3﹦a5,故A项错误;a3+a3﹦2a3,故B项错误;a3+a3﹦-a6,故D项错误,选C.【点睛】本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.9、C【解析】

延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE=12S△10、B【解析】

由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.【详解】解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.11、B【解析】

解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知关于x的方程=3的解为正数,所以﹣2m+9>0,解得m<,当x=3时,x==3,解得:m=,所以m的取值范围是:m<且m≠.故答案选B.12、B【解析】

解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于点E,∴,解得CE=cm,CD=3cm.故选B.考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2x【解析】

根据分式的运算法则计算即可求解.【详解】(x+1+)÷===2x.故答案为2x.【点睛】本题考查了分式的混合运算,熟知分式的混合运算顺序及运算法则是解答本题的关键.14、B【解析】

根据平行线的性质即可解决问题【详解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故选B.【点睛】考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题.15、<【解析】把点(-1,a)、(-2,b)分别代入抛物线,则有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案为<.16、【解析】

作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长=CQ+QR+CR=GQ+QR+RF≥GF.根据圆周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的长,从而求出△CQR的周长的最小值.【详解】解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四点共圆,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周长的最小值为.【点睛】本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答.17、3【解析】

连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2

①.根据S△OAC=2,得出-a-b=2

②,①与②联立,求出a、b的值,即可求解.【详解】如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2

①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,将①代入,得∴-a-b=2

②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案为3.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.18、11【解析】

根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“边角边”证明Rt△ABD和Rt△CDB全等;根据等底等高的三角形面积相等解答.【详解】有,Rt△ABD≌Rt△CDB,理由:在长方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD与△BFA,△ABD与△AFD,△ABE与△DFE,△AFD与△BCD面积相等,但不全等.故答案为:1;1.【点睛】本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC⊥OA,∴∠1+∠3=90°,∵BD为切线,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.(2)作DF⊥AB于F,连接OE,∵DB=DE,∴EF=BE=3,在RT△DEF中,EF=3,DE=BD=5,EF=3,∴DF=∴sin∠DEF==,∵∠AOE=∠DEF,∴在RT△AOE中,sin∠AOE=,∵AE=6,∴AO=.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.20、(1)8m;(2)答案不唯一【解析】

(1)根据入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴,∴CD==8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,过点D作DCAB于点C.在Rt△ACD中,∠ACD=90°,tanα=,∴AC=αtanα,∴AB=AC+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.21、(1)35%,126;(2)见解析;(3)1344人【解析】

(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果.【详解】(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下:;(3)根据题意得:2100×=1344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.22、(1);(2)【解析】

(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【详解】解:(1)根据题意,画树状图如图:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=.答:他们三人在同一个半天去游玩的概率是.【点睛】本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.23、答案见解析【解析】

根据轴对称的性质作出线段AC的垂直平分线即可得.【详解】如图所示,直线EF即为所求.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图.24、(1)①﹣3;②;(2);(3)【解析】

(1)①把Q(1,a)代入y=x-4,可求出a值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线,点理想值最大时点在上,分析图形即可.【详解】(1)①∵点在直线上,∴,∴点的“理想值”=-3,故答案为:﹣3.②当点在与轴切点时,点的“理想值”最小为0.当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,设点Q(x,y),与x轴切于A,与OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切线,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴点的“理想值”为,故答案为:.(2)设直线与轴、轴的交点分别为点,点,当x=0时,y=3,当y=0时,x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如图,作直线.当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值.作轴于点,∴,∴.∵的半径为1,∴.∴,∴.∴.②如图当与直线相切时,LQ=,相应的圆心满足题意,其横坐标取到最小值.作轴于点,则.设直线与直线的交点为.∵直线中,k=,∴,∴,点F与Q重合,则.∵的半径为1,∴.∴.∴,∴.∴.由①②可得,的取值范围是.(3)∵M(2,m),∴M点在直线x=2上,∵,∴LQ取最大值时,=,∴作直线y=x,与x=2交于点N,当M与ON和x轴同时相切时,半径r最大,根据题意作图如下:M与ON相切于Q,与x轴相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半径为.【点睛】本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论.25、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.【解析】

(1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二:延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.【详解】证明:如图①是的中线,(或证明四边形ABDE是平行四边形,从而得到)【探究】四边形ABPE是平行四边形.方法一:如图②,证明:过点D作交直线于点,∴四边形是平行四边形,∵由问题结论可得∴四边形是平行四边形.方法二:如图③,证明:延长BP交直线CF于点N,∵是的中线,∴四边形是平行四边形.【应用】如图④,延长BP交CF于H.由上面可知,四边形是平行四边形,∴四边形APHE是平行四边形,,【点睛】此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.26、(1)8cm(2)24cm2(3)60cm2(4)17s【解析】

(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;(3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.【详解】(1)由图象知,当t由0增大到4时,点P由BC,∴BC==4×2=8(㎝);(2)a=S△ABC=×6×8=24(㎝2);(3)同理,由图象知CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝∴图1中的图象面积为6×14-4×6=60㎝2;(4)图1中的多边形的周长为(14+6)×2=40㎝b=(40-6)÷2=17秒.27、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】

(1)根据抛物线的解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论