甘肃省重点中学2024届中考考前最后一卷数学试卷含解析_第1页
甘肃省重点中学2024届中考考前最后一卷数学试卷含解析_第2页
甘肃省重点中学2024届中考考前最后一卷数学试卷含解析_第3页
甘肃省重点中学2024届中考考前最后一卷数学试卷含解析_第4页
甘肃省重点中学2024届中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省重点中学2024届中考考前最后一卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为().A. B. C. D.2.如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为()A. B.1 C.2 D.43.如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335°° B.255° C.155° D.150°4.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是()A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形5.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()A. B. C. D.6.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为()A.30° B.40° C.50° D.60°7.如图,是的直径,是的弦,连接,,,则与的数量关系为()A. B.C. D.8.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.cm B.cm C.cm D.cm9.如图,⊙O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB与OC互相垂直 D.AB与OC互相平分10.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.12.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.13.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.14.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则⊙O的半径为___________.15.计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的,请写出一个符合上述规律的算式.(2)设其中一个数的十位数字为a,个位数字为b,请用含a,b的算式表示这个规律.16.如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是_____平方米.三、解答题(共8题,共72分)17.(8分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.18.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.19.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:类(),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:类学生有人,补全条形统计图;类学生人数占被调查总人数的%;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在中的概率.20.(8分)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.21.(8分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)22.(10分)“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):112323233433433534344545343456(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.23.(12分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.24.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】

如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解】如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.2、A【解析】

在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.【详解】在Rt△AOB中,AD=2,AD为斜边OB的中线,∴OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2-x,根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,过D作DE⊥x轴,交x轴于点E,可得E为AO中点,∴OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE•OE=-(+))×(-))=1.∴S△AOC=DE•OE=,故选A.【点睛】本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.3、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.4、D【解析】

依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.【详解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A选项正确;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B选项正确;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;∵O不一定是AC的中点,∴四边形AECF不一定是平行四边形,∴四边形AFCE不一定是矩形,故D选项错误,故选D.【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质.5、B【解析】

画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.6、C【解析】

依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.【详解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°−40°=50°,故选C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7、C【解析】

首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.【详解】解:∵是的直径,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故选C.【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.8、B【解析】试题解析:∵菱形ABCD的对角线根据勾股定理,设菱形的高为h,则菱形的面积即解得即菱形的高为cm.故选B.9、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等边三角形,∴OA=AC=OC=BC=OB,∴四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)∵AB与OC互相平分,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.10、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】

先求出球的总数,再根据概率公式求解即可.【详解】∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=.故答案为.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12、【解析】

首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.13、1.【解析】

连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案为1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.14、【解析】

如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.【详解】如图,连接CO并延长,交AB于点F;∵AC=BC,∴CF⊥AB(垂径定理的推论);∵BD是⊙O的直径,∴AD⊥AB;设⊙O的半径为r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案为.【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.15、(1)十位和个位,44×46=2024;(2)10a(a+1)+b(1﹣b)【解析】分析:(1)、根据题意得出其一般性的规律,从而得出答案;(2)、利用代数式表示出其一般规律得出答案.详解:(1)由已知等式知,每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).点睛:本题主要考查的是规律的发现与整理,属于基础题型.找出一般性的规律是解决这个问题的关键.16、【解析】试题分析:根据题意可知小羊的最大活动区域为:半径为5,圆心角度数为90°的扇形和半径为1,圆心角为60°的扇形,则.点睛:本题主要考查的就是扇形的面积计算公式,属于简单题型.本题要特别注意的就是在拐角的位置时所构成的扇形的圆心角度数和半径,能够画出图形是解决这个问题的关键.在求扇形的面积时,我们一定要将圆心角代入进行计算,如果题目中出现的是圆周角,则我们需要求出圆心角的度数,然后再进行计算.三、解答题(共8题,共72分)17、(1)见解析;(2)图见解析;.【解析】

(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.【详解】解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为.∴S△A1B1C1:S△A2B2C2=()2=.18、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】

(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.19、(1)5;(2)36%;(3).【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数=,进行求解即可;(3)利用列举法求概率即可.试题解析:(1)E类:50-2-3-22-18=5(人),故答案为:5;补图如下:(2)D类:1850×100%=36%,故答案为:36%;(3)设这5人为有以下10种情况:其中,两人都在的概率是:.20、(1)证明见解析(2)【解析】分析:(1)由已知条件易得BE=DF且BE∥DF,从而可得四边BFDE是平行四边形,结合∠EDB=90°即可得到四边形BFDE是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,结合BE=DF可得BE=5,由此可得AB=8,结合BF=DE=4即可求得tan∠BAF=.详解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)在Rt△BCF中,由勾股定理,得AD=,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.∵AF平分∠DAB∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∵四边形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=.点睛:(1)熟悉平行四边形的性质和矩形的判定方法是解答第1小题的关键;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,进而推得DF=AD=5是解答第2小题的关键.21、10【解析】试题分析:如图:过点C作CD⊥AB于点D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同样在Rt△BCD中,可得BD=0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C作CD⊥AB于点D,由已知可得:∠ACD=32°,∠BCD=37°,在Rt△ACD中,∠ADC=90°,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论