福建省厦门市双十中学2022年数学高三第一学期期末统考模拟试题含解析_第1页
福建省厦门市双十中学2022年数学高三第一学期期末统考模拟试题含解析_第2页
福建省厦门市双十中学2022年数学高三第一学期期末统考模拟试题含解析_第3页
福建省厦门市双十中学2022年数学高三第一学期期末统考模拟试题含解析_第4页
福建省厦门市双十中学2022年数学高三第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知展开式中第三项的二项式系数与第四项的二项式系数相等,,若,则的值为()A.1 B.-1 C.8l D.-812.已知是虚数单位,若,则()A. B.2 C. D.33.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.4.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=()A. B. C. D.5.如果实数满足条件,那么的最大值为()A. B. C. D.6.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8 B.7 C.6 D.47.已知实数,满足约束条件,则目标函数的最小值为A. B.C. D.8.向量,,且,则()A. B. C. D.9.在中所对的边分别是,若,则()A.37 B.13 C. D.10.若复数满足(是虚数单位),则()A. B. C. D.11.设,,,则()A. B. C. D.12.A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.14.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.15.已知公差大于零的等差数列中,、、依次成等比数列,则的值是__________.16.若复数z满足,其中i是虚数单位,则z的模是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的导函数的两个零点为和.(1)求的单调区间;(2)若的极小值为,求在区间上的最大值.18.(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?19.(12分)在数列中,已知,且,.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.20.(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立.21.(12分)如图,为等腰直角三角形,,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE.(1)证明:;(2)若,求二面角的余弦值.22.(10分)已知函数的最小正周期是,且当时,取得最大值.(1)求的解析式;(2)作出在上的图象(要列表).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据二项式系数的性质,可求得,再通过赋值求得以及结果即可.【详解】因为展开式中第三项的二项式系数与第四项的二项式系数相等,故可得,令,故可得,又因为,令,则,解得令,则.故选:B.【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.2、A【解析】

直接将两边同时乘以求出复数,再求其模即可.【详解】解:将两边同时乘以,得故选:A【点睛】考查复数的运算及其模的求法,是基础题.3、B【解析】

通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.4、C【解析】

设,则,,,设,根据化简得到,得到答案.【详解】设,则,,,则,设,则,两式相减得到:,,,即,,,故,即,故,故.故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.5、B【解析】

解:当直线过点时,最大,故选B6、A【解析】

则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【详解】最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,从下往上第五层正方体的棱长为:,从下往上第六层正方体的棱长为:,从下往上第七层正方体的棱长为:,从下往上第八层正方体的棱长为:,∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.【点睛】本小题主要考查正方体有关计算,属于基础题.7、B【解析】

作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时.故选B.【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.8、D【解析】

根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.9、D【解析】

直接根据余弦定理求解即可.【详解】解:∵,∴,∴,故选:D.【点睛】本题主要考查余弦定理解三角形,属于基础题.10、B【解析】

利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.11、A【解析】

先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.12、A【解析】

直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.二、填空题:本题共4小题,每小题5分,共20分。13、360【解析】

先计算第一块小矩形的面积,第二块小矩形的面积,,面积和超过0.5,所以中位数在第二块求解,然后再求得平均数作差即可.【详解】第一块小矩形的面积,第二块小矩形的面积,故;而,故.故答案为:360.【点睛】本题考查频率分布直方图、样本的数字特征,考查运算求解能力以及数形结合思想,属于基础题.14、【解析】

先找到平面区域内任意两点的最大值为,再利用三角恒等变换化简即可得到最大值.【详解】由已知及正弦定理,得,所以,,取AB中点E,AC中点F,BC中点G,如图所示显然平面区域任意两点距离最大值为,而,当且仅当时,等号成立.故答案为:.【点睛】本题考查正弦定理在平面几何中的应用问题,涉及到距离的最值问题,在处理这类问题时,一定要数形结合,本题属于中档题.15、【解析】

利用等差数列的通项公式以及等比中项的性质,化简求出公差与的关系,然后转化求解的值.【详解】设等差数列的公差为,则,由于、、依次成等比数列,则,即,,解得,因此,.故答案为:.【点睛】本题考查等差数列通项公式以及等比中项的应用,考查计算能力,属于基础题.16、【解析】

先求得复数,再由复数模的计算公式即得.【详解】,,则.故答案为:【点睛】本题考查复数的四则运算和求复数的模,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间是,单调递减区间是和;(2)最大值是.【解析】

(1)求得,由题意可知和是函数的两个零点,根据函数的符号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;(2)由(1)中的结论知,函数的极小值为,进而得出,解出、、的值,然后利用导数可求得函数在区间上的最大值.【详解】(1),令,因为,所以的零点就是的零点,且与符号相同.又因为,所以当时,,即;当或时,,即.所以,函数的单调递增区间是,单调递减区间是和;(2)由(1)知,是的极小值点,所以有,解得,,,所以.因为函数的单调递增区间是,单调递减区间是和.所以为函数的极大值,故在区间上的最大值取和中的最大者,而,所以函数在区间上的最大值是.【点睛】本题考查利用导数求函数的单调区间与最值,考查计算能力,属于中等题.18、(1);(2)当BP为cm时,α+β取得最小值.【解析】

(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,根据得到,解得答案.(2)设BP=t,则,故,设,求导得到函数单调性,得到最值.【详解】(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,则,化简得,解之得,或(舍),(2)设BP=t,则,,设,,令f'(t)=0,因为,得,当时,f'(t)<0,f(t)是减函数;当时,f'(t)>0,f(t)是增函数,所以,当时,f(t)取得最小值,即tan(α+β)取得最小值,因为恒成立,所以f(t)<0,所以tan(α+β)<0,,因为y=tanx在上是增函数,所以当时,α+β取得最小值.【点睛】本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力.19、(1);(2)见解析.【解析】

(1)由已知变形得到,从而是等差数列,然后利用等差数列的通项公式计算即可;(2)先求出数列的通项,再利用裂项相消法求出即可.【详解】(1)由已知,,即,又,则数列是以1为首项3为公差的等差数列,所以,即.(2)因为,则,所以,又是递增数列,所以,综上,.【点睛】本题考查由递推公式求数列通项公式、裂项相消法求数列的和,考查学生的计算能力,是一道基础题.20、(1)(2)证明见解析【解析】

(1)由点可得,由,根据即可求解;(2)设直线的方程为,联立可得,设,由韦达定理可得,再根据直线的斜率公式求得;由点B与点Q关于原点对称,可设,可求得,则,即可求证.【详解】解:(1)由题意可知,,又,得,所以椭圆的方程为(2)证明:设直线的方程为,联立,可得,设,则有,因为,所以,又因为点B与点Q关于原点对称,所以,即,则有,由点在椭圆上,得,所以,所以,即,所以存在实数,使成立【点睛】本题考查椭圆的标准方程,考查直线的斜率公式的应用,考查运算能力.21、(1)见解析;(2)【解析】

(1)由折叠过程知与平面垂直,得,再取中点,可证与平面垂直,得,从而可得线面垂直,再得线线垂直;(2)由已知得为中点,以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,由已知求出线段长,得出各点坐标,用平面的法向量计算二面角的余弦.【详解】(1)易知与平面垂直,∴,连接,取中点,连接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中点,令,则,由,,∴,解得,故.以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,如图,则,,,设平面的法向量为,则,取,则.又易知平面的一个法向量为,.∴二面角的余弦值为.【点睛】本题考查证明线线垂直,考查用空间向量法求二面角.证线线垂直,一般先证线面垂直,而证线面垂直又要证线线垂直,注意线线垂直、线面垂直及面面垂直的转化.求空间角,常用方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论