2025届河北承德市隆化县九年级数学第一学期期末复习检测试题含解析_第1页
2025届河北承德市隆化县九年级数学第一学期期末复习检测试题含解析_第2页
2025届河北承德市隆化县九年级数学第一学期期末复习检测试题含解析_第3页
2025届河北承德市隆化县九年级数学第一学期期末复习检测试题含解析_第4页
2025届河北承德市隆化县九年级数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北承德市隆化县九年级数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图:已知CD为⊙O的直径,过点D的弦DE∥OA,∠D=50°,则∠C的度数是()A.25° B.40° C.30° D.50°2.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是()A. B. C. D.3.如图,在△ABC中,中线AD、BE相交于点F,EG∥BC,交AD于点G,则的值是()A. B. C. D.4.如图,正方形ABCD中,AD=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,延长DF交BC与点M,连接BF、DG.以下结论:①∠BFD+∠ADE=180°;②△BFM为等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6⑥sin∠EGB=;其中正确的个数是()A.3 B.4 C.5 D.65.抛掷一枚质地均匀的硬币,连续掷三次,出现“一次正面,两次反面”的概率为()A. B. C. D.6.如图,在正方形网格中,已知的三个顶点均在格点上,则的正切值为()A. B. C. D.7.下列事件属于随机事件的是()A.旭日东升 B.刻舟求剑 C.拔苗助长 D.守株待兔8.在同一坐标系中,二次函数的图象与一次函数的图象可能是()A. B.C. D.9.下列图形,既是轴对称图形又是中心对称图形的是()A.正三角形 B.正五边形 C.等腰直角三角形 D.矩形10.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数(件)501001502005008001000合格频数4288141176445724901若出售1500件衬衣,则其中次品最接近()件.A.100 B.150 C.200 D.240二、填空题(每小题3分,共24分)11.若是一元二次方程的两个实数根,则_______.12.点P(﹣6,3)关于x轴对称的点的坐标为______.13.计算:sin45°=____________.14.如图,在Rt△ABC中,∠BCA=90º,∠BAC=30º,BC=4,将Rt△ABC绕A点顺时针旋转90º得到Rt△ADE,则BC扫过的阴影面积为___.15.将抛物线C1:y=x2﹣4x+1先向左平移3个单位,再向下平移2个单位得到将抛物线C2,则抛物线C2的解析式为:_____.16.如果方程x2+4x+n=0可以配方成(x+m)2=3,那么(n﹣m)2020=_____.17.关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为________.18.分解因式:x3y﹣xy3=_____.三、解答题(共66分)19.(10分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degreeofsurprise),记作.(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标,点坐标,惊喜四边形属于所学过的哪种特殊平行四边形?,为.(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.20.(6分)如图,在平面直角系中,点A在x轴正半轴上,点B在y轴正半轴上,∠ABO=30°,AB=2,以AB为边在第一象限内作等边△ABC,反比例函数的图象恰好经过边BC的中点D,边AC与反比例函数的图象交于点E.(1)求反比例函数的解析式;(2)求点E的横坐标.21.(6分)如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=3,BC=4时,求的值.22.(8分)(1)解方程(2)计算23.(8分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N,若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D、F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.24.(8分)已知一个二次函数的图象经过点、和三点.(1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.25.(10分)已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,且点B的坐标为.(1)求反比例函数的表达式;(2)点在反比例函数的图象上,求△AOC的面积;(3)在(2)的条件下,在坐标轴上找出一点P,使△APC为等腰三角形,请直接写出所有符合条件的点P的坐标.26.(10分)如图,直线AC与⊙O相切于点A,点B为⊙O上一点,且OC⊥OB于点O,连接AB交OC于点D.(1)求证:AC=CD;(2)若AC=3,OB=4,求OD的长度.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据DE∥OA证得∠AOD=50°即可得到答案.【详解】解:∵DE∥OA,∠D=50°,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°.故选:A.【点睛】此题考查平行线的性质,同弧所对的圆周角与圆心角的关系,利用平行线证得∠AOD=50°是解题的关键.2、D【分析】首先过点B作BC垂直OA于C,根据AO=4,△ABO是等辺三角形,得出B点坐标,迸而求出k的值.【详解】解:过点B作BC垂直OA于C,

∵点A的坐标是(2,0)

,AO=4,

∵△ABO是等边三角形∴OC=

2,BC=∴点B的坐标是(2,),把(2,)代入,得:k=xy=故选:D【点睛】本题考查的是利用等边三角形的性质来确定反比例函数的k值.3、C【分析】先证明AG=GD,得到GE为△ADC的中位线,由三角形的中位线可得GEDCBD;由EG∥BC,可证△GEF∽△BDF,由相似三角形的性质,可得;设GF=x,用含x的式子分别表示出AG和AF,则可求得答案.【详解】∵E为AC中点,EG∥BC,∴AG=GD,∴GE为△ADC的中位线,∴GEDCBD.∵EG∥BC,∴△GEF∽△BDF,∴,∴FD=2GF.设GF=x,则FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,∴.故选:C.【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键.4、C【分析】根据正方形的性质、折叠的性质、三角形外角的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理对各个选项依次进行判断、计算,即可得出答案.【详解】解:正方形ABCD中,,E为AB的中点,,,,

沿DE翻折得到,

,,,,

,,

又,

,∴,又∵,,∴∠BFD+∠ADE=180°,故①正确;∵,,∴又∵,,∴,∴MB=MF,∴△BFM为等腰三角形;故②正确;,,

∴,∴,又∵,∴,∵,,∴,

∽,故正确;

,,,

∵在和中,,

≌,,

设,则,,

在中,由勾股定理得:,

解得:,∴EG=5,,,∴sin∠EGB=,故⑥正确;

∵,,,∴,又∵,∴∽,∴∴BE=2FM,故④正确;∽,且,设,则,

在中,由勾股定理得:,

解得:舍去或,

,故错误;故正确的个数有5个,故选:C.【点睛】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数等知识,本题综合性较强,证明三角形全等和三角形相似是解题的关键.5、B【分析】利用树状图分析,即可得出答案.【详解】共8种情况,出现“一次正面,两次反面”的情况有3种,所以概率=,故答案选择B.【点睛】本题考查的是求概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6、D【分析】延长交网格于,连接,得直角三角形ACD,由勾股定理得出、,由三角函数定义即可得出答案.【详解】解:延长交网格于,连接,如图所示:则,,,的正切值;故选:D.【点睛】本题考查了解直角三角形以及勾股定理的运用;熟练掌握勾股定理,构造直角三角形是解题的关键.7、D【分析】根据事件发生的可能性大小,逐一判断选项,即可.【详解】A、旭日东升是必然事件;B、刻舟求剑是不可能事件;C、拔苗助长是不可能事件;D、守株待兔是随机事件;故选:D.【点睛】本题主要考查随机事件的概念,掌握随机事件的定义,是解题的关键.8、C【分析】根据二次函数、一次函数图像与系数的关系,对每个选项一一判断即可.【详解】A.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a>0,b<0,故A选项不可能.B.由一次函数图像可得:a>0,b<0;由二次函数图像可得:a>0,b>0,故B选项不可能.C.由一次函数图像可得:a<0,b>0;由二次函数图像可得:a<0,b>0,故C选项可能.D.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a<0,b<0,故D选项不可能.故选:C.【点睛】本题主要考查一次函数、二次函数图像与系数的关系,根据一次函数、二次函数图像判断系数的正负是解题关键.9、D【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、B【分析】根据频数表计算出每次的合格频率,然后估计出任抽一件衬衣的合格频率,从而可得任抽一件衬衣的次品频率,再乘以1500即可得.【详解】由依次算得各个频率为:则任抽一件衬衣的合格频率约为因此任抽一件衬衣的次品频率为所求的次品大概有(件)故选:B.【点睛】本题考查了概率估计的方法,理解频数和频率的定义是解题关键.二、填空题(每小题3分,共24分)11、1【分析】利用一元二次方程根与系数的关系求出,即可求得答案.【详解】∵是一元二次方程的两个实数根,∴,,∴,故答案为:1.【点睛】本题主要考查了一元二次方程根与系数的关系,方程的两个根为,则,.12、(﹣6,﹣3).【分析】根据“在平面直角坐标系中,关于轴对称的两点的坐标横坐标相同、纵坐标互为相反数”,即可得解.【详解】关于轴对称的点的坐标为故答案为:【点睛】本题比较容易,考查平面直角坐标系中关于x轴对称的两点的坐标之间的关系,是需要识记的内容.13、1.【分析】根据sin45°=代入计算即可.【详解】sin45°=,故答案为:1.【点睛】本题考查特殊角的三角函数值,熟练记忆是关键.14、4π【分析】先利用含30度的直角三角形三边的关系得到AB=2BC=8,AC=BC=,再根据旋转的性质得到∠CAE=∠BAD=90°,然后根据扇形的面积公式,利用BC扫过的阴影面积=S扇形BAD-S△CAE进行计算.【详解】解:∵∠BCA=90°,∠BAC=30°,∴AB=2BC=8,AC=BC=4,∵Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,∴∠CAE=∠BAD=90°,∴BC扫过的阴影面积=S扇形BAD-S△CAE=.故答案为:4π.【点睛】本题考查了扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=或S扇形=(其中l为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了旋转的性质.15、y=(x+1)2﹣1【分析】先确定抛物线C1:y=x2﹣4x+1的顶点坐标为(2,﹣3),再利用点平移的坐标变换规律,把点(2,﹣3)平移后对应点的坐标为(﹣1,﹣1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线C1:y=x2﹣4x+1=(x﹣2)2﹣3的顶点坐标为(2,﹣3),把点(2,﹣3)先向左平移3个单位,再向下平移2个单位后所得对应点的坐标为(-1,﹣1),所以平移后的抛物线的解析式为y=(x+1)2﹣1,故答案为y=(x+1)2﹣1.【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的特点.16、1【分析】已知配方方程转化成一般方程后求出m、n的值,即可得到结果.【详解】解:由(x+m)2=3,得:

x2+2mx+m2-3=0,

∴2m=4,m2-3=n,

∴m=2,n=1,

∴(n﹣m)2020=(1﹣2)2020=1,

故答案为:1.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.17、.【详解】试题分析:设方程的另一个根为m,根据根与系数的关系得到1•m=,解得m=.考点:根与系数的关系.18、xy(x+y)(x﹣y).【解析】分析:首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.详解:x3y﹣xy3=xy(x2﹣y2)=xy(x+y)(x﹣y).点睛:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题(共66分)19、(1);;菱形;2;(2);(3),或,.【分析】(1)当y=0时可求出点A坐标为,B坐标为,AB=4,根据四边形四边相等可知该四边形为菱形,由可知抛物线顶点坐标为(1,-4),所以B,AB=8,即可得到为2;(2)惊喜度为1即,利用抛物线解析式分别求出各点坐标,从而得到AC和BD的长,计算即可求出m;(3)先求出顶点坐标,对称轴为直线,讨论对称轴直线是否在这个范围内,分3中情况分别求出最大值为16是m的值.【详解】解:(1)在抛物线上,当y=0时,,解得,,,∵点在点右边,∴A点的坐标为,B点的坐标为;∴AB=4,∵∴顶点B的坐标为,由于BD关于x轴对称,∴D的坐标为,∴BD=8,通过抛物线的对称性得到AB=BC,又由于翻折,得到AB=BC=AD=CD,∴惊喜四边形为菱形;;(2)由题意得:的顶点坐标,解得:,∴∴,(3)抛物线的顶点为,对称轴为直线:①即时,,得∴②即时,时,对应惊喜线上最高点的函数值,∴(舍去);∴③即时形成不了惊喜线,故不存在综上所述,,或,【点睛】本题主要考查了二次函数的综合问题,需要熟练掌握二次函数的基础内容:顶点坐标、对称轴以及各交点的坐标求法.20、(1);(2).【分析】(1)直接利用等边三角形的性质结合举行的判定方法得出D点坐标进而得出答案;(2)首先求出AC的解析式进而将两函数联立求出E点坐标即可.【详解】解:(1)∵∠ABO=30°,AB=2,∴OA=1,,连接AD.∵△ABC是等边三角形,点D是BC的中点,∴AD⊥BC,又∠OBD=∠BOA=90°,∴四边形OBDA是矩形,∴,∴反比例函数解析式是.(2)由(1)可知,A(1,0),,设一次函数解析式为y=kx+b,将A,C代入得,解得,∴.联立,消去y,得,变形得x2﹣x﹣1=0,解得,,∵xE>1,∴.【点睛】本题主要考察反比例函数综合题,解题关键是熟练掌握计算法则求出AC的解析式.21、(1)见解析;(2).【分析】(1)只要根据平行线的性质和角平分线的定义即可得到∠1=∠3,进而可得结论;(2)易证△AEF∽△CEB,于是AE:CE=AF:BC,然后结合(1)的结论即可求出AE:EC,进一步即得结果.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3,∵BF平分∠ABC,∴∠1=∠2,∴∠1=∠3,∴AB=AF;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,∴△AEF∽△CEB,∴AE:CE=AF:BC,∵AF=AB=3,BC=4,∴AE:EC=3:4,∴.【点睛】本题考查了平行四边形的性质、等腰三角形的判定和相似三角形的判定和性质,属于常考题型,熟练掌握上述基本知识是解题关键.22、(1);(2)1.【分析】(1)根据因式分解法解方程,即可得到答案;(2)分别计算绝对值,特殊角的三角函数,二次根式,负整数指数幂,然后再进行合并,即可得到答案.【详解】解:(1),∴,∴,∴;(2),.【点睛】本题考查了解一元二次方程,实数的混合运算,解题的关键是掌握解一元二次方程的方法,以及实数混合运算的运算法则.23、(1)y=﹣x2+2x+1;(2)-3;(3)当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).【解析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•xN﹣BG•xM=1得出xN﹣xM=1,联立直线和抛物线解析式求得x=,根据xN﹣xM=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【详解】(1)由题意知,解得:,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,设M点的横坐标为xM,N点的横坐标为xN,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•(xN﹣1)-BG•(xM-1)=1,∴xN﹣xM=1,由得:x2+(k﹣2)x﹣k+3=0,解得:x==,则xN=、xM=,由xN﹣xM=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),(a)当△PCD∽△FOP时,,∴,∴t2﹣(1+m)t+2=0①;(b)当△PCD∽△POF时,,∴,∴t=(m+1)②;(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程②有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论