版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省无锡新区六校联考九年级数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.点关于轴对称的点的坐标是()A. B. C. D.2.二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是()A.±2 B.2 C.±2.5 D.2.53.如果,那么锐角A的度数是()A.60° B.45° C.30° D.20°4.如图,是的直径,点在上,,则的度数为()A. B. C. D.5.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点.AB⊥x轴于B,CD⊥x轴于D,当四边形ABCD的面积为6时,则k的值是()A.6 B.3 C.2 D.6.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.7.下列图形中,可以看作是中心对称图形的为()A. B. C. D.8.下列标志中既是轴对称图形又是中心对称图形的是()A. B.C. D.9.如图,将沿着弦翻折,劣弧恰好经过圆心.如果半径为4,那么的弦长度为A. B. C. D.10.用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是()A.1cm B.2cm C.3cm D.4cm二、填空题(每小题3分,共24分)11.已知⊙O的周长等于6πcm,则它的内接正六边形面积为_____cm212.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为的大视力表制作一个测试距离为的小视力表.如图,如果大视力表中“”的高度是,那么小视力表中相应“”的高度是__________.13.如果记,表示当时的值,即;表示当时的值,即;表示当时,的值,即;那么______________.14.如图,△ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.15.计算:2sin30°+tan45°=_____.16.如图,⊙O与直线相离,圆心到直线的距离,,将直线绕点逆时针旋转后得到的直线刚好与⊙O相切于点,则⊙O的半径=.17.如图,在△ABC中,E,F分别为AB,AC的中点,则△AEF与△ABC的面积之比为.18.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度(米)关于水珠与喷头的水平距离(米)的函数解析式是.水珠可以达到的最大高度是________(米).三、解答题(共66分)19.(10分)如图,抛物线y=-x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(-1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.20.(6分)解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.21.(6分)(1)如图1,在⊙O中,弦AB与CD相交于点F,∠BCD=68°,∠CFA=108°,求∠ADC的度数.(2)如图2,在正方形ABCD中,点E是CD上一点(DE>CE),连接AE,并过点E作AE的垂线交BC于点F,若AB=9,BF=7,求DE长.22.(8分)如图,在ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边CDE.(1)如图1,若∠CDB=45°,AB=6,求等边CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.①求证:CF⊥DF;②如图3,将CFD沿CF翻折得CF,连接B,直接写出的最小值.23.(8分)用适当的方法解方程:(1)(2).24.(8分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC、DC(或它们的延长线)于点M,N.(1)当∠MAN绕点A旋转到(如图1)时,求证:BM+DN=MN;(2)当∠MAN绕点A旋转到如图2的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?请直接写出你的猜想。(不需要证明)25.(10分)如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.(1)求证:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的长.26.(10分)如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成面积为200m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据特殊锐角的三角函数值,先确定点M的坐标,然后根据关于x轴对称的点的坐标x值不变,y值互为相反数的特点进行选择即可.【详解】因为,所以,所以点所以关于x轴的对称点为故选D.【点睛】本题考查的是特殊角三角函数值和关于x轴对称的点的坐标特点,熟练掌握三角函数值是解题的关键.2、D【解析】分m≤0、m≥1和0≤m≤1三种情况,根据y的最大值为4,结合二次函数的性质求解可得.【详解】y=﹣x2+2mx=﹣(x﹣m)2+m2(m为常数),①若m≤0,当x=0时,y=﹣(0﹣m)2+m2=4,m不存在,②若m≥1,当x=1时,y=﹣(1﹣m)2+m2=4,解得:m=2.5;③若0≤m≤1,当x=m时,y=m2=4,即:m2=4,解得:m=2或m=﹣2,∵0≤m≤1,∴m=﹣2或2都舍去,故选:D.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据题意分三种情况讨论.3、A【分析】根据特殊角的三角函数值即可求解.【详解】解:∵,∴锐角A的度数是60°,故选:A.【点睛】本题考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.4、B【分析】连接AC,根据圆周角定理,分别求出∠ACB=90,∠ACD=20,即可求∠BCD的度数.【详解】连接AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠AED=20°,
∴∠ACD=∠AED=20°,
∴∠BCD=∠ACB+∠ACD=90°+20°=110°,
故选:B.【点睛】本题考查的是圆周角定理:①直径所对的圆周角为直角;②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、B【分析】根据反比例函数的对称性可知:OB=OD,AB=CD,再由反比例函数y=中k的几何意义,即可得到结论.【详解】解:∵正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,∴AB=OB=OD=CD,∴四边形ABCD是平行四边形,∴k=2S△AOB=2×=3,故选:B.【点睛】本题考查反比例函数与正比例函数的结合题型,关键在于熟悉反比例函数k值的几何意义.6、A【分析】根据中心对称图形的定义和轴对称的定义逐一判断即可.【详解】A选项是中心对称图形,也是轴对称图形,故A符合题意;B选项是中心对称图形,不是轴对称图形,故B不符合题意;C选项不是中心对称图形,是轴对称图形,故C不符合题意;D选项是中心对称图形,不是轴对称图形,故D不符合题意.故选:A.【点睛】此题考查的是中心对称图形的识别和轴对称图形的识别,掌握中心对称图形的定义和轴对称图形的定义是解决此题的关键.7、B【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:B.【点睛】此题考查中心对称图形的特点,解题关键在于判断中心对称图形的关键是旋转180°后能够重合.8、C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,也不是中心对称图形.故错误;
C、是轴对称图形,也是中心对称图形.故正确;
D、是轴对称图形,不是中心对称图形.故错误.
故选:C.【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、D【分析】如果过O作OC⊥AB于D,交折叠前的AB弧于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而求出AB的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB弧于C,
根据折叠后劣弧恰好经过圆心O,那么可得出的是OD=CD=2,
直角三角形OAD中,OA=4,OD=2,
∴AD=∴AB=2AD=,故选:D.【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.10、B【解析】∵扇形的圆心角为120°,半径为6cm,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据圆的周长公式,得,解得r=2cm.故选B.考点:圆锥和扇形的计算.二、填空题(每小题3分,共24分)11、【分析】首先过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:如图,过点O作OH⊥AB于点H,连接OA,OB,∴AH=AB,∵⊙O的周长等于6πcm,∴⊙O的半径为:3cm,∵∠AOB=×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∴AH=cm,∴OH==,∴S正六边形ABCDEF=6S△OAB=6××3×=,故答案为:.【点睛】本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键.12、【分析】先利用平行线证明相似,再利用相似三角形的性质得到比例式,即可计算出结果.【详解】解:如图,
由题意得:CD∥AB,
∴,,∵AB=3.5cm,BE=5m,DE=3m,,∴CD=2.1cm,
故答案是:2.1cm.【点睛】本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行得到相似列出比例式,可以计算出结果.13、【分析】观察前几个数,,,,依此规律即可求解.【详解】∵,,∴,∵,,∴,,∴,∵,∴2019个1.故答案为:.【点睛】此题考查了分式的加减运算法则.解答此类题目的关键是认真观察题中式子的特点,找出其中的规律.14、【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.15、1.【分析】根据解特殊角的三角函数值即可解答.【详解】原式=1×+1=1.【点睛】本题考查特殊角的三角函数值,解题的关键是牢记这些特殊三角函数值.16、1.【解析】试题分析:∵OB⊥AB,OB=,OA=4,∴在直角△ABO中,sin∠OAB=,则∠OAB=60°;又∵∠CAB=30°,∴∠OAC=∠OAB-∠CAB=30°,∵直线刚好与⊙O相切于点C,∴∠ACO=90°,∴在直角△AOC中,OC=OA=1.故答案是1.考点:①解直角三角形;②切线的性质;③含30°角直角三角形的性质.17、3:3.【解析】试题解析:∵E、F分别为AB、AC的中点,∴EF=BC,DE∥BC,∴△ADE∽△ABC,∴.考点:3.相似三角形的判定与性质;3.三角形中位线定理..18、10【解析】将一般式转化为顶点式,依据自变量的变化范围求解即可.【详解】解:,当x=2时,y有最大值10,故答案为:10.【点睛】利用配方法将一般式转化为顶点式,再利用顶点式去求解函数的最大值.三、解答题(共66分)19、(1)b=2,c=1,D(2,3);(2)E(4,-5);(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【分析】(1)将点A分别代入y=-x2+bx+3,y=x+c中求出b、c的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D的坐标;(2))过点E作EF⊥y轴,设E(x,-x2+2x+3),先求出点B、C的坐标,再利用面积加减关系表示出△CBE的面积,即可求出点E的坐标.(3)分别以点D、M、N为直角顶点讨论△MND是等腰直角三角形时点N的坐标.【详解】(1)将A(-1,0)代入y=-x2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x2+2x+3,将点A代入y=x+c中,得-1+c=0,解得c=1,∴y=x+1,解,解得,(舍去),∴D(2,3).∴b=2,c=1,D(2,3).(2)过点E作EF⊥y轴,设E(x,-x2+2x+3),当y=-x2+2x+3中y=0时,得-x2+2x+3=0,解得x1=3,x2=-1(舍去),∴B(3,0).∵C(0,3),∴,∴,解得x1=4,x2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD的解析式为y=x+1,设P(m,m+1),则Q(m,-m2+2m+3),∴线段PQ的长度h=-m2+2m+3-(m+1)=,∴当=0.5,线段PQ有最大值.当∠D是直角时,不存在△MND是等腰直角三角形的情形;当∠M是直角时,如图1,点M在线段DN的垂直平分线上,此时N1(2,0);当∠M是直角时,如图2,作DE⊥x轴,M2E⊥HE,N2H⊥HE,∴∠H=∠E=90,∵△M2N2D是等腰直角三角形,∴N2M2=M2D,∠N2M2D=90,∵∠N2M2H=∠M2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);当∠N是直角时,如图3,作DE⊥x轴,∴∠N3HM3=∠DEN3=90,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);当∠N是直角时,如图4,作DE⊥x轴,∴∠N4HM4=∠DEN4=90,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N的坐标.20、(1)x1=2,x2;(2)x1=1或x2=2.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)提取公因式x后,求出方程的解即可;【详解】解:(1)2x2﹣7x+2=1,(x﹣2)(2x﹣1)=1,∴x﹣2=1或2x﹣1=1,∴x1=2,x2;(2)x2﹣2x=1,x(x﹣2)=1,x1=1或,x2=2.【点睛】本题主要考查了解一元二次方程,掌握解一元二次方程是解题的关键.21、(1)40°;(2)1.【分析】(1)由∠BCD=18°,∠CFA=108°,利用三角形外角的性质,即可求得∠B的度数,然后由圆周角定理,求得答案;(2)由正方形的性质和已知条件证明△ADE∽△ECF,根据相似三角形的性质可知:,设DE=x,则EC=9﹣x,代入计算求出x的值即可.【详解】(1)∵∠BCD=18°,∠CFA=108°,∴∠B=∠CFA﹣∠BCD=108°﹣18°=40°,∴∠ADC=∠B=40°.(2)解:∵四边形ABCD是正方形,∴CD=AD=BC=AB=9,∠D=∠C=90°,∴CF=BC﹣BF=2,在Rt△ADE中,∠DAE+∠AED=90°,∵AE⊥EF于E,∴∠AED+∠FEC=90°,∴∠DAE=∠FEC,∴△ADE∽△ECF,∴,设DE=x,则EC=9﹣x,∴,解得x1=3,x2=1,∵DE>CE,∴DE=1.【点睛】此题考查三角形的外角的性质,圆周角定理,正方形的性质,三角形相似的判定及性质.22、(1);(2)①证明见解析;②.【分析】(1)过点C作CH⊥AB于点H,由等腰三角形的性质和直角三角形的性质可得∠A=∠B=30°,AH=BH=3,CH==,由∠CDB=45°,可得CD=CH=;(2)①延长BC到N,使CN=BC,由“SAS”可证CEN≌CDA,可得EN=AD,∠N=∠A=30°,由三角形中位线定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可证DG=CF,DG∥CF,即可证四边形CFDG是矩形,可得结论;②由“SAS”可证EFD≌BF,可得B=DE,则当CD取最小值时,有最小值,即可求解.【详解】解:(1)如图1,过点C作CH⊥AB于点H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,在RtBCH中,tan∠B=,∴tan30°=∴CH==,∵∠CDH=45°,CH⊥AB,∴∠CDH=∠DCH=45°,∴DH=CH=,CD=CH=;(2)①如图2,延长BC到N,使CN=BC,∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°,∠NCA=60°,∵ECD是等边三角形,∴EC=CD,∠ECD=60°,∴∠NCA=∠ECD,∴∠NCE=∠DCA,又∵CE=CD,AC=BC=CN,∴CEN≌CDA(SAS),∴EN=AD,∠N=∠A=30°,∵BC=CN,BF=EF,∴CF∥EN,CF=EN,∴∠BCF=∠N=30°,∴∠ACF=∠ACB﹣∠BCF=90°,又∵DG⊥AC,∴CF∥DG,∵∠A=30°,DG⊥AC,∴DG=AD,∴DG=CF,∴四边形CFDG是平行四边形,又∵∠ACF=90°,∴四边形CFDG是矩形,∴∠CFD=90°∴CF⊥DF;②如图3,连接B,∵将CFD沿CF翻折得CF,∴CD=C,DF=F,∠CFD=∠CF=90°,又∵EF=BF,∠EFD=∠BF,∴EFD≌BF(SAS),∴B=DE,∴B=CD,∵当B取最小值时,有最小值,∴当CD取最小值时,有最小值,∵当CD⊥AB时,CD有最小值,∴AD=CD,AB=2AD=2CD,∴最小值=.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,矩形的判定和性质,等腰三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.23、(1);;(2)=,=1.【分析】(1)用公式法求解;(2)用因式分解法求解.【详解】解:(1)a=2,b=3,c=-5,△=32-1×2×(-5)=19>0,所以x1===1,x1===;(2)[(x+3)+(1-2x)][(x+3)-(1-2x)]=0(-x+1)(3x+2)=0所以3x+2=0或-x+1=0,解得x1=,x2=1.【点睛】本题考查了一元二次方程的解法,根据方程的特点选择适当的方法是解决此题的关键.24、(1)见解析;(2)DN-BM=MN【分析】(1)根据题意延长CB至E使得BE=DN,连接AE,利用全等三角形判定证明△ABE≌△AND和△EAM≌△NAM,等量代换即可求证BM+DN=MN;(2)由题意在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【详解】解:(1)证明:如图1,延长CB至E使得BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=90°=∠ABE,在△ADN和△ABE中∵AD=AB∠D=∠ABEDN=BE,△ABE≌△ADN(SAS),∴∠BAE=∠DAN,AE=AN,∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,∵∠MAN=45°,∴∠EAM=∠MAN,∵在△EAM和△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东科贸职业学院《钢筋混凝土结构设计原理》2023-2024学年第一学期期末试卷
- 广东警官学院《工程结构抗震设计》2023-2024学年第一学期期末试卷
- 广东江门中医药职业学院《化工新产品开发概论》2023-2024学年第一学期期末试卷
- 广东技术师范大学《JavaScript与jQuery开发》2023-2024学年第一学期期末试卷
- 广东环境保护工程职业学院《故事片创作》2023-2024学年第一学期期末试卷
- 广东海洋大学《测绘工程案例》2023-2024学年第一学期期末试卷
- 广东工商职业技术大学《材料成形数值分析》2023-2024学年第一学期期末试卷
- 广东财贸职业学院《世界历史文选》2023-2024学年第一学期期末试卷
- 八年级物理《电功率和用电安全》课件
- 赣南医学院《音乐剧表演》2023-2024学年第一学期期末试卷
- 人教版六年级数学上册练习题及参考答案
- 虚假信息的传播与伦理
- 獾子油压疮护理
- 某27层高层住宅楼施工组织设计方案
- 化工(危险化学品)企业主要负责人、安管员安全生产管理专项培训考核试卷(附参考答案)
- 中华人民共和国残疾评定表
- 人教版美术五年级上册《第2课 色彩的和谐》说课稿2
- 2024年6月浙江省高考历史试卷(真题+答案)
- 住友(SWS)汽车连接器(Connectors)产品配套手册
- 办公楼室内装饰工程施工设计方案技术标范本
- 2023年香港华夏杯六年级竞赛初赛数学试卷
评论
0/150
提交评论