版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省张家界市桑植县2025届数学九上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,A、D是⊙O上的两点,BC是直径,若∠D=40°,则∠ACO=()A.80° B.70° C.60° D.50°2.一元二次方程的解是()A.或 B. C. D.3.下列事件中,是随机事件的是()A.任意画两个圆,这两个圆是等圆 B.⊙O的半径为5,OP=3,点P在⊙O外C.直径所对的圆周角为直角 D.不在同一条直线上的三个点确定一个圆4.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A.1 B.2 C.3 D.45.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A. B. C. D.6.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6 B.12 C.24 D.不能确定7.下列计算正确的是()A.3x﹣2x=1 B.x2+x5=x7C.x2•x4=x6 D.(xy)4=xy48.抛物线的对称轴为A. B. C. D.9.下列说法正确的是()A.所有菱形都相似 B.所有矩形都相似C.所有正方形都相似 D.所有平行四边形都相似10.如图,抛物线y=﹣x2+2x+2交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.下列说法:其中正确判断的序号是()①抛物线与直线y=3有且只有一个交点;②若点M(﹣2,y1),N(1,y2),P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1;④在x轴上找一点D,使AD+BD的和最小,则最小值为.A.①②④ B.①②③ C.①③④ D.②③④11.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6,BC=8,则△AEF的面积是()A.3 B.4 C.5 D.612.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则线段CD的长为()A.2 B. C.3 D.二、填空题(每题4分,共24分)13.如图,将的斜边AB绕点A顺时针旋转得到AE,直角边AC绕点A逆时针旋转得到AF,连结EF.若,,且,则_____.14.已知,.且,设,则的取值范围是______.15.某校五个绿化小组一天的植树的棵数如下:9,10,12,x,1.已知这组数据的平均数是10,那么这组数据的方差是_____.16.已知点A(-3,m)与点B(2,n)是直线y=-x+b上的两点,则m与n的大小关系是___.17.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1=.18.建国70周年大阅兵时,以“同心共筑中国梦”为主题的群众游行队伍某表演方阵有8行12列,后又增加了429人,使得增加的行数和列数相同.请你计算增加了多少行.若设增加了x行,由题意可列方程为_______________________.三、解答题(共78分)19.(8分)如图,已知二次函数的图象与轴交于点、,与轴交于点,直线交二次函数图象的对称轴于点,若点C为的中点.(1)求的值;(2)若二次函数图象上有一点,使得,求点的坐标;(3)对于(2)中的点,在二次函数图象上是否存在点,使得∽?若存在,求出点的坐标;若不存在,请说明理由.20.(8分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:①打折销售;②不打折,一次性送装修费每平方米元.试问哪种方案更优惠?21.(8分)已知矩形的周长为1.(1)当该矩形的面积为200时,求它的边长;(2)请表示出这个矩形的面积与其一边长的关系,并求出当矩形面积取得最大值时,矩形的边长.22.(10分)如图,已知直线与x轴、y轴分别交于点A,B,与双曲线分别交于点C,D,且点C的坐标为.(1)分别求出直线、双曲线的函数表达式.(2)求出点D的坐标.(3)利用图象直接写出:当x在什么范围内取值时?23.(10分)阅读理解,我们已经学习了点和圆、直线和圆的位置关系以及各种位置关系的数量表示,如下表:类似于研究点和圆、直线和圆的位置关系,我们也可以用两圆的半径和两圆的圆心距(两圆圆心的距离)来刻画两圆的位置关系.如果两圆的半径分别为和(r1>r2),圆心距为d,请你通过画图,并利用d与和之间的数量关系探索两圆的位置关系.图形表示(圆和圆的位置关系)数量表示(圆心距d与两圆的半径、的数量关系)24.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.25.(12分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=°时,四边形BFDE是正方形.26.如图,点都在上,请仅用无刻度的直尺分别按下列要求画图.(不写作法,保留作图痕迹)(1)在图1中,若,画一个的内接等腰直角三角形.(2)在图2中,若点在弦上,且,画一个的内接等腰直角三角形.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据圆周角的性质可得∠ABC=∠D,再根据直径所对圆周角是直角,即可得出∠ACO的度数.【详解】∵∠D=40°,∴∠AOC=2∠D=80°,∵OA=OC,∴∠ACO=∠OAC=(180°﹣∠AOC)=50°,故选:D.【点睛】本题考查圆周角的性质,关键在于熟练掌握圆周角的性质,特别是直径所对的圆周角是直角.2、A【解析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程x(x-1)=0,
可得x=0或x-1=0,
解得:x=0或x=1.
故选:A.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.3、A【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A.任意画两个圆,这两个圆是等圆,属于随机事件,符合题意;B.⊙O的半径为5,OP=3,点P在⊙O外,属于不可能事件,不合题意;C.直径所对的圆周角为直角,属于必然事件,不合题意;D.不在同一条直线上的三个点确定一个圆,属于必然事件,不合题意;故选:A.【点睛】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【解析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,所以∠ANM=∠AEB,则可求得②正确;根据三角形的外角的性质得到①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE=AN,再根据相似三角形的性质得到EF=MN,于是得到S△AEF=2S△AMN.故④正确.【详解】如图,把△ADF绕点A顺时针旋转90°得到△ABH由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正确∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故③正确,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故①正确连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵△AMN∽△BME,△AFE∽△BME∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正确故选D.【点睛】此题考查相似三角形全等三角形的综合应用,熟练掌握相似三角形,全等三角形的判定定理是解决此类题的关键.5、B【解析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有种,且都是等可能的,其中两人同时选择“参加社会调查”的结果有种,则所求概率故选B.点睛:求概率可以用列表法或者画树状图的方法.6、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=OA•PE+OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴点P到矩形的两条对角线AC和BD的距离之和是1.故选B.【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.7、C【分析】分别根据合并同类项的法则,同底数幂的乘法法则,幂的乘方与积的乘方逐一判断即可.【详解】解:3x﹣2x=x,故选项A不合题意;x2与x5不是同类项,故不能合并,故选项B不合题意;x2•x4=x6,正确,故选项C符合题意;,故选项D不合题意.故选:C.【点睛】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟练掌握运算法则是解答本题的关键.8、B【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x2+2是顶点式,
∴对称轴是直线x=0,即为y轴.
故选:B.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.9、C【分析】根据相似多边形的定义一一判断即可.【详解】A.菱形的对应边成比例,对应角不一定相等,故选项A错误;B.矩形的对应边不一定成比例,对应角一定相等,故选项B错误;C.正方形对应边一定成比例,对应角一定相等,故选项C正确;D.平行四边形对应边不一定成比例,对应角不一定相等,故选项D错误.故选:C.【点睛】本题考查了相似多边形的判定,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型.10、C【分析】根据抛物线的性质和平移,以及一动点到两定点距离之和最小问题的处理方法,对选项进行逐一分析即可.【详解】①抛物线的顶点,则抛物线与直线y=3有且只有一个交点,正确,符合题意;②抛物线x轴的一个交点在2和3之间,则抛物线与x轴的另外一个交点坐标在x=0或x=﹣1之间,则点N是抛物线的顶点为最大,点P在x轴上方,点M在x轴的下放,故y1<y3<y2,故错误,不符合题意;③y=﹣x2+2x+2=﹣(x+1)2+3,将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1,正确,符合题意;④点A关于x轴的对称点,连接A′B交x轴于点D,则点D为所求,距离最小值为BD′==,正确,符合题意;故选:C.【点睛】本题考查抛物线的性质、平移和距离的最值问题,其中一动点到两定点距离之和最小问题比较巧妙,属综合中档题.11、A【分析】因为四边形ABCD是矩形,所以AD=BC=8,∠BAD=90°,,又因为点E,F分别是AO,AD的中点,所以EF为三角形AOD的中位线,推出,,AF:AD=1:2由此即可解决问题.【详解】解:∵四边形ABCD是矩形,AB=6,BC=8
∴,∵E,F分别是AO.AD中点,
∴,,AF:AD=1:2,∴△AEF的面积为3,
故选:A.【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.12、D【分析】直接利用A,B点坐标得出AB的长,再利用位似图形的性质得出CD的长.【详解】解:∵A(6,6),B(8,2),∴AB==2,∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴线段CD的长为:×2=.故选:D.【点睛】本题考查了位似图形,解题的关键是熟悉位似图形的性质.二、填空题(每题4分,共24分)13、【分析】由旋转的性质可得,,由勾股定理可求EF的长.【详解】解:由旋转的性质可得,,,且,故答案为【点睛】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.14、【分析】先根据已知得出n=1-m,将其代入y中,得出y关于m的二次函数即可得出y的范围【详解】解:∵∴n=1-m,∴∵,∴,∴当m=时,y有最小值,当m=0时,y=1当m=1时,y=1∴故答案为:【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质是解题的关键15、2【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+1)=10,解得:x=11,∴S2=[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(1﹣10)2],=×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16、m>n【分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【详解】∵直线y=−x+b中,k=−<0,∴此函数y随着x增大而减小.∵−3<2,∴m>n.故填:m>n.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.17、.【分析】根据三角形数得到x1=1,x1=3=1+1,x3=6=1+1+3,x4=10=1+1+3+4,x5=15=1+1+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即xn=1+1+3+…+n=、xn+1=,然后计算xn+xn+1可得.【详解】∵x1=1,
x1═3=1+1,
x3=6=1+1+3,
x4═10=1+1+3+4,
x5═15=1+1+3+4+5,
…
∴xn=1+1+3+…+n=,xn+1=,
则xn+xn+1=+=(n+1)1,
故答案为:(n+1)1.18、【分析】根据增加后的总人数减去已有人数等于429这一等量关系列出方程即可.【详解】设增加了x行,则增加的列数也为x,由题意可得,.【点睛】本题考查了由实际问题列一元二次方程,根据题意找出等量关系是解题关键.三、解答题(共78分)19、(1);(2)或;(3)不存在,理由见解析.【分析】(1)设对称轴与轴交于点,如图1,易求出抛物线的对称轴,可得OE的长,然后根据平行线分线段成比例定理可得OA的长,进而可得点A的坐标,再把点A的坐标代入抛物线解析式即可求出m的值;(2)设点Q的横坐标为n,当点在轴上方时,过点Q作QH⊥x轴于点H,利用可得关于n的方程,解方程即可求出n的值,进而可得点Q坐标;当点在轴下方时,注意到,所以点与点关于直线对称,由此可得点Q坐标;(3)当点为x轴上方的点时,若存在点P,可先求出直线BQ的解析式,由BP⊥BQ可求得直线BP的解析式,然后联立直线BP和抛物线的解析式即可求出点P的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P是否满足条件;当点Q取另外一种情况的坐标时,再按照同样的方法计算判断即可.【详解】解:(1)设抛物线的对称轴与轴交于点,如图1,∴轴,∴,∵抛物线的对称轴是直线,∴OE=1,∴,∴∴将点代入函数表达式得:,∴;(2)设,①点在轴上方时,,如图2,过点Q作QH⊥x轴于点H,∵,∴,解得:或(舍),∴;②点在轴下方时,∵OA=1,OC=3,∴,∵,∴点与点关于直线对称,∴;(3)①当点为时,若存在点P,使∽,则∠PBQ=∠COA=90°,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,,∴,∵,,∴,∴不存在;②当点为时,如图4,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,,∴,∵,,∴,∴不存在.综上所述,不存在满足条件的点,使∽.【点睛】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.20、(1)10%;(2)选择方案①更优惠.【分析】(1)此题可以通过设出平均每次下调的百分率为,根据等量关系“起初每平米的均价下调百分率)下调百分率)两次下调后的均价”,列出一元二次方程求出.(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价两年物业管理费②方案:下调后的均价,比较确定出更优惠的方案.【详解】解:(1)设平均每次降价的百分率是,依题意得,解得:,(不合题意,舍去).答:平均每次降价的百分率为.(2)方案①购房优惠:4050×120×(1-0.98)=9720(元)方案②购房优惠:70×120=8400(元)9720(元)>8400(元)答:选择方案①更优惠.【点睛】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键.21、(1)矩形的边长为10和2;(2)这个矩形的面积S与其一边长x的关系式是S=-x2+30x;当矩形的面积取得最大值时,矩形是边长为15的正方形.【分析】(1)设矩形的一边长为,则矩形的另一边长为,根据矩形的面积为20列出相应的方程,从而可以求得矩形的边长;
(2)根据题意可以得到矩形的面积与一边长的函数关系,然后根据二次函数的性质可以求得矩形的最大面积,并求出矩形面积最大时它的边长.【详解】解:(1)设矩形的一边长为,则矩形的另一边长为,根据题意,得,解得,.答:矩形的边长为10和2.(2)设矩形的一边长为,面积为S,根据题意可得,,所以,当矩形的面积最大时,.答:这个矩形的面积与其一边长的关系式是S=-x2+30x,当矩形面积取得最大值时,矩形是边长为15的正方形.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程以及函数关系式,利用二次函数的性质解答.22、(1),;(2)点D的坐标是;(3)【解析】(1)把C(-1,2)代入y1=x+m得到m的值,把C(-1,2)代入双曲线得到k的值;(2)解由两个函数的解析式组成的方程组,即可得交点坐标D;
(3)观察图象得到当-3<x<-2时一次函数的函数值比反比例函数的函数值要大.【详解】解:(1)∵点在的图象上;∴,解得,则.∵在的图象上,∴,解得,∴.(2)联立得,解得,或,∵点C的坐标是,∴点D的坐标是.(3)由图象可知,当时,【点睛】本题考查了用待定系数法求反比例函数与一次函数的解析式即反比例函数与一次函数的交点问题.解题的关键是:(1)代入点C的坐标求出m、k的值;(2)把两函数的解析式联立起来组成方程组,解方程组即可得到它们的交点坐标.(3)根据两函数图象的上下位置关系找出不等式的解集.本题考查的是反比例函数与一次函数的交点问题及也考查了数形结合的思想.23、见解析【分析】两圆的位置关系可以从两圆公共点的个数来考虑.两圆无公共点(即公共点的个数为0个),1个公共点,2个公共点,或者通过平移实验直观的探索两圆的相对位置,最后得出答案.初中阶段不考虑重合的情况;【详解】解:如图,连接,设的半径为,的半径为圆和圆的位置关系(图形表示)数量表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商务助理个人工作总结范文(9篇)
- 2024年指定:私人会议室租赁协议
- 2024年收益权归属合同
- 幼儿教育学习心得(范文6篇)
- 2024年招标采购与买卖合同
- 2024高中学习计划书范文(31篇)
- 食品安全主题班会的教案(合集9篇)
- 2024年换热站施工协议
- 2024年硅系铁合金项目评价分析报告
- 关于大一学生会工作计划范文(6篇)
- 北师版 七上 数学 第四章 基本平面图形《角-第2课时 角的大小比较》课件
- 外研版小学英语(三起点)六年级上册期末测试题及答案(共3套)
- 北师大版(2024新版)七年级上册生物期中学情调研测试卷(含答案)
- 产品包装规范管理制度
- 2024年海南省中考物理试题卷(含答案)
- 2024统编新版小学三年级语文上册第八单元:大单元整体教学设计
- 第07讲 物态变化(原卷版)-2024全国初中物理竞赛试题编选
- 高危儿规范化健康管理专家共识解读
- DB61T1521.5-2021奶山羊养殖技术规范 第5部分:后备羊培育
- 中国心力衰竭基层诊疗与管理指南(2024年版)
- 2024-2030年中国番茄粉行业市场发展趋势与前景展望战略分析报告
评论
0/150
提交评论