2025届甘肃省白银市名校数学九上期末达标检测模拟试题含解析_第1页
2025届甘肃省白银市名校数学九上期末达标检测模拟试题含解析_第2页
2025届甘肃省白银市名校数学九上期末达标检测模拟试题含解析_第3页
2025届甘肃省白银市名校数学九上期末达标检测模拟试题含解析_第4页
2025届甘肃省白银市名校数学九上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省白银市名校数学九上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个菱形的边长为,面积为,则该菱形的两条对角线的长度之和为()A. B. C. D.2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A.0 B.1 C.2 D.34.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.若生产的产品一天的总利润为1120元,且同一天所生产的产品为同一档次,则该产品的质量档次是()A.6 B.8 C.10 D.125.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表.根据表中数据,可得y关于x的函数表达式为近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A. B. C. D.6.二次函数y=(x+2)2-3的顶点坐标是()A.(﹣2,3) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)7.在平面直角坐标系中,平移二次函数的图象能够与二次函数的图象重合,则平移方式为()A.向左平移个单位,向下平移个单位B.向左平移个单位,向上平移个单位C.向右平移个单位,向下平移个单位D.向右平移个单位,向上平移个单位8.如图,四边形内接于圆,过点作于点,若,,则的长度为()A. B.6 C. D.不能确定9.如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的().A.甲 B.乙 C.丙 D.丁10.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C.∶2 D.∶3二、填空题(每小题3分,共24分)11.如图,点p是∠的边OA上的一点,点p的坐标为(12,5),则tanα=_____.12.某10人数学小组的一次测试中,有4人的成绩都是80分,其他6人的成绩都是90分,则这个小组成绩的平均数等于_____分.13.如图,在中,,,以为直角边、为直角顶点作等腰直角三角形,则______.14.关于x的方程x2﹣3x﹣m=0的两实数根为x1,x2,且,则m的值为_____.15.正六边形的边长为6,则该正六边形的面积是______________.16.方程2x2-x=0的根是______.17.如图,是的直径,是的切线,交于点,,,则______.18.如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果,,那么线段CE的长是______.三、解答题(共66分)19.(10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中、都与地面l平行,车轮半径为,,,坐垫与点的距离为.(1)求坐垫到地面的距离;(2)根据经验,当坐垫到的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为,现将坐垫调整至坐骑舒适高度位置,求的长.(结果精确到,参考数据:,,)20.(6分)图中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.线段和的端点均在格点上.(1)在图中画出以为一边的,点在格点上,使的面积为4,且的一个角的正切值是;(2)在图中画出以为顶角的等腰(非直角三角形),点在格点上.请你直接写出的面积.21.(6分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于、两点,与轴交于点.(1)求反比例函数的表达式及点坐标;(2)请直接写出当为何值时,;(3)求的面积.22.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个,因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,定价为多少元?23.(8分)如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.(1)在图1中,作AD的中点P;(2)在图2中,作AB的中点Q.24.(8分)如图,一次函数的图象与反比例函数的图象相交于点,两点,与,轴分别交于,两点.(1)求一次函数的表达式;(2)求的面积.25.(10分)已知:二次函数为(1)写出它的图象的开口方向,对称轴及顶点坐标;(2)为何值时,顶点在轴上方;(3)若抛物线与轴交于,过作轴交抛物线于另一点,当时,求此二次函数的解析式.26.(10分)如图,在口ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD(1)求证:△ABF∽△CEB(2)若△DEF的面积为2,求△CEB的面积

参考答案一、选择题(每小题3分,共30分)1、C【分析】如图,根据菱形的性质可得,,,再根据菱形的面积为,可得①,由边长结合勾股定理可得②,由①②两式利用完全平方公式的变形可求得,进行求得,即可求得答案.【详解】如图所示:四边形是菱形,,,,面积为,①菱形的边长为,②,由①②两式可得:,,,即该菱形的两条对角线的长度之和为,故选C.【点睛】本题考查了菱形的性质,菱形的面积,勾股定理等,熟练掌握相关知识是解题的关键.2、B【解析】必然事件就是一定发生的事件,结合不可能事件、随机事件的定义依据必然事件的定义逐项进行判断即可.【详解】A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误,故选B.【点睛】本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、A【解析】试题分析:因为y=的图象,在每个象限内,y的值随x值的增大而增大,所以k-1<0,k<1.故选A.考点:反比例函数的性质.4、A【分析】设该产品的质量档次是x档,则每天的产量为[95﹣5(x﹣1)]件,每件的利润是[6+2(x﹣1)]元,根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其小于等于10的值即可得出结论.【详解】设该产品的质量档次是x档,则每天的产量为[95﹣5(x﹣1)]件,每件的利润是[6+2(x﹣1)]元,根据题意得:[6+2(x﹣1)][95﹣5(x﹣1)]=1120,整理得:x2﹣18x+72=0,解得:x1=6,x2=12(舍去).故选A.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5、A【分析】直接利用已知数据可得xy=100,进而得出答案.【详解】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:.故选A.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.6、C【分析】根据二次函数的性质直接求解.【详解】解:二次函数y=(x+2)2-3的顶点坐标是(-2,-3).

故选:C.【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;抛物线的顶点式为y=a(x-)2+,对称轴为直线x=-,顶点坐标为(-,);抛物线与y轴的交点坐标为(0,c).7、D【解析】二次函数y=x1+4x+3=(x+1)1-1,将其向右平移1个单位,再向上平移1个单位得到二次函数y=x1.故选D.点睛:抛物线的平移时解析式的变化规律:左加右减,上加下减.8、B【分析】首先根据圆内接四边形的性质求得∠A的度数,然后根据解直角三角形的方法即可求解.【详解】∵四边形ABCD内接于⊙O,,∴∠A=180−120=60,∵BH⊥AD,,∴BH=AHtan60°=,故选:B.【点睛】本题考查了圆内接四边形及勾股定理的知识,解题的关键是熟知解直角三角形的方法.9、A【分析】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置.【详解】解:根据题意,△ABC的三边之比为要使△ABC∽△DEF,则△DEF的三边之比也应为经计算只有甲点合适,

故选:A.

【点睛】本题考查了相似三角形的判定定理:

(1)两角对应相等的两个三角形相似.

(2)两边对应成比例且夹角相等的两个三角形相似.

(3)三边对应成比例的两个三角形相似.10、A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF与△ABC的面积之比等于:故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.二、填空题(每小题3分,共24分)11、【分析】根据题意过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出,代入进行计算求出即可.【详解】解:过P作PE⊥x轴于E,∵P(12,5),∴PE=5,OE=12,∴.故答案为:.【点睛】本题考查锐角三角函数的定义的应用,注意掌握在Rt△ACB中,∠C=90°,则.12、1.【分析】根据平均数的定义解决问题即可.【详解】平均成绩=(4×80+6×90)=1(分),故答案为1.【点睛】本题考查平均数的定义,解题的关键是掌握平均数的定义.13、1【分析】由于AD=AB,∠CAD=90°,则可将△ABD绕点A逆时针旋转90°得△ABE,如图,根据旋转的性质得∠CAE=90°,AC=AE,BE=CD,于是可判断△ACE为等腰直角三角形,则∠ACE=45°,CE=AC=5,易得∠BCE=90°,然后在Rt△CAE中利用勾股定理计算出BE=1,从而得到CD=1.【详解】解:∵△ADB为等腰直角三角形,∴AD=AB,∠BAD=90°,将△ACD绕点A顺时针旋转90°得△AEB,如图,∴∠CAE=90°,AC=AE,CD=BE,∴△ACE为等腰直角三角形,∴∠ACE=45°,,∵∠ACB=45°,∴∠BCE=45°+45°=90°,在Rt△BCE中,,∴CD=1.故答案为1.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,以及勾股定理等知识.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键的利用旋转得到直角三角形CBE.14、-1.【分析】根据根与系数的关系即可求出答案.【详解】由题意可知:x1+x2=3,x1x2=﹣m,∵,∴﹣3x1+x1+x2=2x1x2,∴m+3=﹣2m,∴m=﹣1,故答案为:﹣1【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.15、【分析】根据题意可知边长为6的正六边形可以分成六个边长为6的正三角形,从而计算出正六边形的面积即可.【详解】解:连接正六变形的中心O和两个顶点D、E,得到△ODE,因为∠DOE=360°×=60°,又因为OD=OE,所以∠ODE=∠OED=(180°-60°)÷2=60°,则三角形ODE为正三角形,∴OD=OE=DE=6,∴S△ODE=OD•OE•sin60°=×6×6×=9.正六边形的面积为6×9=54.故答案为.【点睛】本题考查学生对正多边形的概念掌握和计算的能力,即要熟悉正六边形的性质,也要熟悉正三角形的面积公式.16、x1=,x2=0【分析】利用因式分解法解方程即可.【详解】2x2-x=0,x(2x-1)=0,x=0或2x-1=0,∴x1=,x2=0.故答案为x1=,x2=0.【点睛】本题考查了一元二次方程的解法-因式分解法,熟练运用因式分解法将方程化为x(2x-1)=0是解决问题的关键.17、【分析】因是的切线,利用勾股定理即可得到AB的值,是的直径,则△ABC是直角三角形,可证得△ABC∽△APB,利用相似的性质即可得出BC的结果.【详解】解:∵是的切线∴∠ABP=90°∵,∴AB2+BP2=AP2∴AB=∵是的直径∴∠ACB=90°在△ABC和△APB中∴△ABC∽△APB∴∴∴故答案为:【点睛】本题主要考查的是圆的性质以及相似三角形的性质和判定,掌握以上几点是解此题的关键.18、【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到DG=AD,CG=CE,BG=BF,D是BC的中点,由直角三角形斜边中线等于斜边一半可得BC=5,再根据勾股定理求出GC即可解答..【详解】解:延长AG交BC于D点,∵中线BF、CE交于点G,∵△ABC的两条中线AD、CE交于点G,

∴点G是△ABC的重心,D是BC的中点,

∴AG=AD,CG=CE,BG=BF,∵,,∴,.∵CE⊥BF,即∠BGC=90°,∴BC=2DG=5,在Rt△BGC中,CG=,∴,故答案为:.【点睛】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.理解三角形重心的性质是解题的关键.三、解答题(共66分)19、(1)99.5(2)3.9【分析】(1)作于点,由可得答案;(2)作于点,先根据求得的长度,再根据可得答案【详解】(1)如图1,过点E作于点,由题意知、,∴,则单车车座到地面的高度为;(2)如图2所示,过点作于点,由题意知,则,∴.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.20、(1)画图见解析;(2)画图见解析,1.【分析】(1)根据AB的长以及△ABE的面积可得出AB边上的高为2,再直接利用正切的定义借助网格得出E点位置,再画出△ABE即可;

(2)在网格中根据勾股定理可得出DC2=22+42,利用网格找出使CF2=DC2=22+42的点F即可,然后利用网格通过转化法可求出△CDF的面积.【详解】解:(1)设△ABE中AB边上的高为EG,则S△ABE=×AB×EG=4,又AB=4,∴EG=2,假设∠A的正切值为,即tanA=,∴AG=1,∴点E的位置如图所示,△ABE即为所求:

(2)根据勾股定理可得,DC2=22+42,∴CF2=DC2=22+42,所以点F的位置如图所示,△DCF即为所求;

根据网格可得,△DCF的面积=4×4-×2×4-×2×4-×2×2=1.【点睛】此题主要考查了应用设计与作图,正确借助网格分析是解题关键.21、(1),;(2)或;(3)1.【分析】(1)由题意将代入,可得反比例函数的表达式,进而将代入反比例函数的表达式即可求得点坐标;(2)根据题意可知一次函数的图象在反比例函数的图象的下方即直线在曲线下方时的取值范围,以此进行分析即可;(3)根据题意先利用待定系数法求得一次函数的表达式,并代入可得点坐标,进而根据进行分析计算即可.【详解】解:(1)由题意将代入,可得:,解得:,又将代入反比例函数,解得:,所以反比例函数的表达式为:,点坐标为:;(2)即一次函数的图象在反比例函数的图象的下方,观察图象可得:或;(3)观察图象可得:,一次函数的图象与轴交于点,将,代入一次函数,可得,即一次函数的表达式为:,代入可得点坐标为:,所以.【点睛】本题考查一次函数与反比例函数综合,熟练掌握利用待定系数法求解函数解析式以及利用割补法计算三角形的面积是解题的关键.22、该商品定价60元.【分析】设每个商品定价x元,然后根据题意列出方程求解即可.【详解】解:设每个商品定价x元,由题意得:解得,当x=50时,进货180-10(50-52)=200,不符题意,舍去当x=60时,进货180-10(60-52)=100,符合题意.答:当该商品定价60元,进货100个.【点睛】本题主要考查一元一次方程的应用,关键是设出未知数然后列方程求解即可.23、(1)画图见解析;(2)画图见解析.【解析】(1)先连接矩形的对角线交于点O,再连接MO并延长,交AD于P,则点P即为AD的中点;(2)先运用(1)中的方法,画出AD的中点P,再连接BP,交AC于点K,则点E,再连接DK并延长,交AB于点Q,则点Q即为AB的中点.【详解】(1)如图点P即为所求;(2)如图点Q即为所求;【点睛】本题考查的是作图的应用,掌握矩形的性质和三角形中位线定理、正确作出图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论