安徽省宣城市六中学2024年中考数学模拟试卷含解析_第1页
安徽省宣城市六中学2024年中考数学模拟试卷含解析_第2页
安徽省宣城市六中学2024年中考数学模拟试卷含解析_第3页
安徽省宣城市六中学2024年中考数学模拟试卷含解析_第4页
安徽省宣城市六中学2024年中考数学模拟试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宣城市六中学2024年中考数学模拟精编试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A. B. C. D.2.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,153.3点40分,时钟的时针与分针的夹角为()A.140° B.130° C.120° D.110°4.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A. B. C. D.5.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A.8073 B.8072 C.8071 D.80706.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90° B.120° C.270° D.360°7.下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A.1B.2C.3D.48.下列运算正确的是()A.(a2)3=a5 B. C.(3ab)2=6a2b2 D.a6÷a3=a29.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A. B. C. D.10.﹣2的绝对值是()A.2 B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.12.平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是_____.13.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为_____.14.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_____.15.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,cos∠AMC,则tan∠B的值为__________.16.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+2.其中正确的是_____.(把你认为正确结论的序号都填上)17.等腰梯形是__________对称图形.三、解答题(共7小题,满分69分)18.(10分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=DE,求tan∠ABD的值.19.(5分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?20.(8分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.21.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.22.(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.23.(12分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:(1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。(2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。24.(14分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)求证:CD是⊙O的切线;

(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,ADBD=2

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】∵①对顶角相等,故此选项正确;②若a>b>0,则<,故此选项正确;③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误;∴从中任选一个命题是真命题的概率为:.故选:B.2、D【解析】

将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.3、B【解析】

根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:3点40分时针与分针相距4+=份,30°×=130,故选B.【点睛】本题考查了钟面角,确定时针与分针相距的份数是解题关键.4、D【解析】

根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故选D.点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.5、A【解析】

观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1;第2个图案中涂有阴影的小正方形个数为:9=4×2+1;第3个图案中涂有阴影的小正方形个数为:13=4×3+1;…发现规律:第n个图案中涂有阴影的小正方形个数为:4n+1;∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1.故选:A.【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.6、B【解析】

先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,

∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,

∠BAC=180°-60°-∠1=120°-∠1,

∵∠ABC+∠ACB+∠BAC=180°,

∴60°+(120°-∠2)+(120°-∠1)=180°,

∴∠1+∠2=120°.

故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.7、D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;对角线相等的平行四边形为矩形,(3)错误;圆的切线垂直于过切点的半径,(4)错误;平分弦(不是直径)的直径垂直于弦,(5)错误.故选D.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、B【解析】分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法.解析:,故A选项错误;a3·a=a4故B选项正确;(3ab)2=9a2b2故C选项错误;a6÷a3=a3故D选项错误.故选B.9、B【解析】

解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.10、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.二、填空题(共7小题,每小题3分,满分21分)11、630【解析】分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.详解:设甲车,乙车的速度分别为x千米/时,y千米/时,甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,乙车行驶900-720=180千米所需时间为180÷80=2.25小时,甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.所以甲车从B地向A地行驶了120×2.25=270千米,当乙车到达A地时,甲车离A地的距离为900-270=630千米.点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.12、0.5<m<3【解析】

根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.【详解】∵点P(m−3,1−2m)在第三象限,∴,解得:0.5<m<3.故答案为:0.5<m<3.【点睛】本题考查了解一元二次方程组与象限及点的坐标的有关性质,解题的关键是熟练的掌握解一元二次方程组与象限及点的坐标的有关性质.13、﹣1【解析】

根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【详解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣1.故答案为:﹣1.14、k<1【解析】

根据一元二次方程根的判别式结合题意进行分析解答即可.【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△=22解得:k<1.故答案为:k<1.【点睛】熟知“在一元二次方程ax2+bx+c=0(a≠0)15、【解析】

根据cos∠AMC,设,,由勾股定理求出AC的长度,根据中线表达出BC即可求解.【详解】解:∵cos∠AMC,,设,,∴在Rt△ACM中,∵AM是BC边上的中线,∴BM=MC=3x,∴BC=6x,∴在Rt△ABC中,,故答案为:.【点睛】本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.16、①②④【解析】

①根据ASA可证△BOE≌△COF,根据全等三角形的性质得到BE=CF,根据等弦对等弧得到,可以判断①;

②根据SAS可证△BOG≌△COH,根据全等三角形的性质得到∠GOH=90°,OG=OH,根据等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判断②;

③通过证明△HOM≌△GON,可得四边形OGBH的面积始终等于正方形ONBM的面积,可以判断③;

④根据△BOG≌△COH可知BG=CH,则BG+BH=BC=4,设BG=x,则BH=4-x,根据勾股定理得到GH==,可以求得其最小值,可以判断④.【详解】解:①如图所示,

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

在△BOE与△COF中,,

∴△BOE≌△COF,

∴BE=CF,

∴,①正确;

②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,

∴△BOG≌△COH;

∴OG=OH,∵∠GOH=90°,

∴△OGH是等腰直角三角形,②正确.③如图所示,

∵△HOM≌△GON,

∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;

④∵△BOG≌△COH,

∴BG=CH,

∴BG+BH=BC=4,

设BG=x,则BH=4-x,

则GH==,

∴其最小值为4+2,④正确.

故答案为:①②④【点睛】考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强.17、轴【解析】

根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.【详解】画图如下:结合图形,根据轴对称的定义及等腰梯形的特征可知,等腰梯形是轴对称图形.故答案为:轴【点睛】本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.三、解答题(共7小题,满分69分)18、(1)90°;(1)证明见解析;(3)1.【解析】

(1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(1)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴,∴DC1=AD•DE∵AC=1DE,∴设DE=x,则AC=1x,则AC1﹣AD1=AD•DE,期(1x)1﹣AD1=AD•x,整理得:AD1+AD•x﹣10x1=0,解得:AD=4x或﹣4.5x(负数舍去),则DC=,故tan∠ABD=tan∠ACD=.19、从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=1.答:从甲班抽调了35人,从乙班抽调了1人.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.20、,当x=1时,原式=﹣1.【解析】

先化简分式,然后将x的值代入计算即可.【详解】解:原式==.且,∴x的整数有,∴取,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.21、(1)抛物线的解析式为:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).解得:,∴抛物线的解析式为:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴抛物线的对称轴是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x轴于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)当y=0时,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+1.如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1时,S四边形CDBF的面积最大=,∴E(1,1).考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值22、(1)见解析;(2)见解析.【解析】

(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论