高中数学数学文化鉴赏与学习专题题组训练22祖暅原理学生版_第1页
高中数学数学文化鉴赏与学习专题题组训练22祖暅原理学生版_第2页
高中数学数学文化鉴赏与学习专题题组训练22祖暅原理学生版_第3页
高中数学数学文化鉴赏与学习专题题组训练22祖暅原理学生版_第4页
高中数学数学文化鉴赏与学习专题题组训练22祖暅原理学生版_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题22祖暅原理一、单选题1.我国南北朝时期的数学家祖暅在计算球的体积时,提出了一个原理(祖暅原理):“幂势既同,则积不容异”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在全部等高处的水平截面的面积相等,则这两个几何体体积相等.利用祖暅原理可以将半球的体积转化为与其同底等高的圆柱和圆锥的体积之差.图1是一种“四脚帐篷”的示意图,其中曲线和均是以1为半径的半圆,平面和平面均垂直于平面,用随意平行于帐篷底面的平面截帐篷,所得截面四边形均为正方形.仿照上述半球的体积计算方法,可以构造一个与帐篷同底等高的正四棱柱,从中挖去一个倒放的同底等高的正四棱锥(如图2),从而求得该帐篷的体积为(

)A. B. C. D.2.祖暅,又名祖暅之,是我国南北朝时期的数学家、天文学家祖冲之的儿子.他在《级术》中提出“幂势既同,则积不容异”的结论,其中“幂”是面积.“势”是高,意思就是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任一平面所截,假如截得的两个截面的面积总相等,那么这两个几何体的体积相等(如图①).这一原理主要应用于计算一些困难几何体的体积,若某艺术品如图②所示,高为40cm,底面为边长20cm的正三角形挖去以底边为直径的圆(如图③),则该艺术品的体积为(

)A. B.C. D.3.我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的几何体,被平行于这两个平面的随意平面所截,假如截得的两个截面的面积总相等,那么这两个几何体的体积相等.这个原理能够帮助人们计算3D打印时的材料耗费问题.3D打印属于快速成形技术的一种,是将粉末状金属或塑料等可粘合材料,通过逐层喷涂,渐渐堆叠累积的方式来构造物体的技术,可以用来制造结构困难的物件.依据祖暅原理,对于3D打印制造的零件,假如能找到另一个与其高相等,并在全部等高处的水平截面的面积均相等的几何体,就可以通过计算该几何体的体积得到打印的零件的体积.现在要用3D打印技术制造一个零件,其在高为h的水平截面的面积为,则该零件的体积为(

)A. B. C. D.4.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于(为球的直径),并得到球的体积为,这种算法比外国人早了一千多年,人们还用过一些类似的公式,依据,推断下列公式中最精确的一个是(

)A. B. C. D.5.祖暅是我国南北朝时期杰出的数学家和天文学家祖冲之的儿子,他提出了一条原理:“幂势既同幂,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在全部等高处的水平截面的面积相等,则这两个几何体体积相等.如图所示,某帐篷的造型是两个全等圆柱垂直相交的公共部分的一半(这个公共部分叫做牟合方盖).设两个圆柱底面半径为,牟合方盖与其内切球的体积比为.则此帐篷距底面处平行于底面的截面面积为(

)A. B. C. D.6.中国南北朝时期数学家、天文学家祖冲之、祖暅父子总结了魏晋时期闻名数学家刘微的有关工作,提出“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,即:两个等高的几何体若在全部等高处的水平截面的面积相等,则这两个几何体的体积相等,上述原理称为“祖暅原理”.一个上底面边长为1,下底面边长为2,侧棱长为的正六棱台与一个不规则几何体满意“幂势既同”,则该不规则几何体的体积为(

)A. B. C. D.217.祖暅(公元世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不简洁.”这句话的意思是:两个等高的几何体若在全部等高处的水平截面的面积相等,则这两个几何体的体积相等.如图将底面直径皆为,高皆为的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面上,用平行于平面且与距离为的平面截两个几何体得到及两截面,可以证明总成立.据此,短轴长为,长半轴为的椭半球体的体积是(

)A. B. C. D.8.祖暅是南北朝时代宏大的科学家,在数学上有突出贡献.他在五世纪末提出祖暅原理:“密势既同,则积不容异.”其意思是:两个等高的几何体若在全部等高处的水平截面面积相等,则这两个几何体的体积相等.我们称由双曲线中的部分绕其虚轴旋转形成的几何体为双曲线旋转体.如图,双曲线旋转体的下半部分挖去底面直径为2a,高为m的圆柱体后,所得几何体与底面半径为,高为m的圆锥均放置于平面上(几何体底面在内).与平面平行且到平面距离为的平面与两几何体的截面面积分别为,可以证明总成立.依据上述原理,的双曲线旋转体的体积为(

)A. B. C. D.9.我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:“幂势既同,则积不容异”意思是两个同高的几何体,假如在等高处的截面积都相等,那么这两个几何体的体积相等.现有同高的三棱锥和圆锥满意祖暅原理的条件,若圆锥的侧面绽开图是半径为的三分之一圆,由此推算三棱锥的体积为(

)A. B. C. D.10.我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:假如两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线绕轴旋转一周得几何体,将放在与轴垂直的水平面上,用平行于平面,且与的顶点距离为的平面截几何体,得截面圆的面积为.由此构造右边的几何体:其中平面,,,,它与在等高处的截面面积都相等,图中为矩形,且,,则几何体的体积为A. B. C. D.11.祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在全部等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆所围成的平面图形绕轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于A. B.C. D.12.祖暅原理:“幂势既同,则积不容异”意思是说两个同高的几何体,若在等高处的截面积恒相等,则体积相等.设为两个同高的几何体,在等高处的截面积不恒相等,的体积不相等,依据祖暅原理可知,是的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件13.我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的几何体,被平行于这两个平面的随意平面所截,假如截得的两个截面的面积总相等,那么这两个几何体的体积相等.依据祖暅原理,对于3D打印制造的零件,假如能找到另一个与其高相等,并在全部等高处的水平截面的面积均相等的几何体,就可以通过计算几何体的体积得到打印的零件的体积.现在要用3D打印技术制造一个高为2的零件,该零件的水平截面面积为,随高度的变更而变更,变更的关系式为,则该零件的体积为(

)A. B. C. D.14.用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的随意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图1)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图2),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆绕轴旋转一周后得一半橄榄状的几何体(如图3),类比上述方法,运用祖暅原理可求得其体积等于(

)A. B. C. D.15.刘徽构造的几何模型“牟合方盖”中说:“取立方棋八枚,皆令立方一寸,积之为立方二寸.规之为圆困,径二寸,高二寸.又复横规之,则其形有似牟合方盖矣.”牟合方盖是一个正方体被两个圆柱从纵横两侧面作内切圆柱体时的两圆柱体的公共部分,计算其体积的方法是将原来的“牟合方益”平均分为八份,取它的八分之一(如图一).记正方形OABC的边长为r,设,过P点作平面PQRS平行于平面OABC.,由勾股定理有,故此正方形PQRS面积是.假如将图一的几何体放在棱长为r的正方体内(如图二),不难证明图二中与图一等高处阴影部分的面积等于.(如图三)设此棱锥顶点到平行于底面的截面的高度为h,不难发觉对于任何高度h,此截面面积必为,依据祖暅原理计算牟合方盖体积(

)注:祖暅原理:“幂势既同,则积不容异”.意思是两个同高的立体,如在等高处的截面积相等,则体积相等A. B. C. D.16.我国南北朝时期的数学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:两个等高的几何体若在全部等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线,直线为曲线在点处的切线.如图所示,阴影部分为曲线、直线以及轴所围成的平面图形,记该平面图形绕轴旋转一周所得的几何体为.给出以下四个几何体:图①是底面直径和高均为的圆锥;图②是将底面直径和高均为的圆柱挖掉一个与圆柱同底等高的倒置圆锥得到的几何体;图③是底面边长和高均为的正四棱锥;图④是将上底面直径为,下底面直径为,高为的圆台挖掉一个底面直径为,高为的倒置圆锥得到的几何体.依据祖暅原理,以上四个几何体中与的体积相等的是A.① B.② C.③ D.④17.祖原理也称祖氏原理,是我国数学家祖暅提出的一个求积的闻名命题:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是两个同高的立体,如在等高处截面积相等,则体积相等.满意的点组成的图形绕轴旋转一周所得旋转体的体积为,由曲线,,围成的图形绕轴旋转一周所得旋转体的体积为,则、满意以下哪个关系式(

)A. B. C. D.18.南北朝时期的宏大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,假如两个截面的面积总是相等,则这两个立体的体积相等.如图,两个半径均为的圆柱体垂直相交,则其重叠部分体积为(

)A. B. C. D.二、多选题19.我国古代数学家祖暅求几何体的体积时,提出一个原理:幂势即同,则积不容异.这个定理的推广是夹在两个平行平面间的两个几何体,被平行于这两个平面的平面所截,若截得两个截面面积比为,则两个几何体的体积比也为.如下图所示,已知线段长为4,直线过点且与垂直,以为圆心,以1为半径的圆绕旋转一周,得到环体;以,分别为上下底面的圆心,以1为上下底面半径的圆柱体;过且与垂直的平面为,平面,且距离为,若平面截圆柱体所得截面面积为,平面截环体所得截面面积为,则下列结论正确的是(

)A.圆柱体的体积为 B.C.环体的体积为 D.环体的体积为20.祖暅(公元5—6世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在全部等高处的水平截面的面积相等,则这两个几何体的体积相等.如图将底面直径皆为,高皆为的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面上,用平行于平面且与距离为的平面截两个几何体得到及两截面,可以证明总成立,若椭半球的短轴,长半轴,则下列结论正确的是(

)A.椭半球体的体积为30πB.椭半球体的体积为15πC.假如,以为球心的球在该椭半球内,那么当球体积最大时,该椭半球体挖去球后,体积为D.假如,以为球心的球在该半球内,那么当球体积最大时,该椭半球体挖去球后,体积为三、填空题21.祖暅,祖冲之之子,南北朝时代宏大的科学家,于5世纪末提出下面的体积计算原理:祖暅原理:“幂势既同,则积不容异”.意思是假如两个等高的几何体在同高处截得两几何体的截面面积相等,那么两个几何体的体积相等,现有如图的半椭球体与被挖去圆锥的圆柱等高,且平行于底面的平面在随意高度截两几何体所得截面面积相等,已知圆柱高为h,底面半径为r,则半椭球的体积是________.22.我国南北朝时代的祖暅提出“幂势既同,则积不容异”,即祖暅原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的随意平面所截,假如截得的两个截面的面积总是相等,那么这两个几何体的体积相等(如图1).在xOy平面上,将双曲线的一支及其渐近线和直线y=0,y=2围成的封闭图形记为D,如图2中阴影部分.记D绕y轴旋转一周所得的几何体为,利用祖暅原理试求的体积为________.23.我国南北朝时期的数学家祖暅(杰出数学家祖冲之的儿子),提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:两个等高的几何体若在全部等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线,直线为曲线在点处的切线.如图所示,阴影部分为曲线、直线以及轴所围成的平面图形,记该平面图形绕轴旋转一周所得的几何体为.过()作的水平截面,所得截面面积(用表示),试借助一个圆锥,并利用祖暅原理,得出体积为___________.24.祖暅是我国古代的宏大科学家,他在5世纪末提出:“幂势即同,则积不容异”,意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的随意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.这就是闻名的祖暅原理,祖暅原理常用来由已知几何体的体积推导未知几何体的体积,例如由圆锥和圆柱的的体积推导半球体的体积,其示意图如图一所示.利用此方法,可以计算如下抛物体的体积:在平面直角坐标系中,设抛物线C的方程为,将C围绕y轴旋转,得到的旋转体称为抛物体.利用祖暅原理它可用一个直三棱柱求解,如图二,由此可计算得该抛物体的体积为___________.四、双空题25.我国古代数学家祖暅求几何体的体积时,提出一个原理:幂势即同,则积不容异.意思是:夹在两个平行平面之间的两个等高的几何体被平行于这两个面的平面去截,若截面积相等,则两个几何体的体积相等,这个定理的推广是:夹在两个平行平面间的几何体,被平行于这两个平面的平面所截,若截得两个截面面积比为,则两个几何体的体积比也为.已知线段长为4,直线过点且与垂直,以为圆心,以1为半径的圆绕旋转一周,得到环体;以,分别为上下底面的圆心,以1为上下底面半径的圆柱体;过且与垂直的平面为,平面,且距离为,若平面截圆柱体所得截面面积为,平面截环体所得截面面积为,则________,环体体积为_________.26.祖暅,祖冲之之子,是我国南宋时期的数学家.他提出了体积计算原理(祖暅原理):“幂势既同,则积不容异”.意思是:假如两等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.已知双曲线的焦点在轴上,离心率为,且过点,则双曲线方程为___________;若直线,在第一象限内与及其渐近线围成如图阴影部分所示的图形,则阴影图形绕轴旋转一周所得几何体的体积为___________27.祖暅是我国南北朝时期宏大的科学家,他于5世纪末提出了“幂势既同,则积不容异”的体积计算原理,即“夹在两个平行平面之间的两个几何体,被平行于这两个平面的随意平面所截,假如裁得的两个截面的面积总相等,那么这两个几何体的体积相等”.现已知直线与双曲线及其渐近线围成的平面图形G如图所示,若将图形G被直线所截得的两条线段绕y轴旋转一周,则形成的旋转面的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论