版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,则输出的的值是()A.8 B.32 C.64 D.1282.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则()A.PA,PB,PC两两垂直 B.三棱锥P-ABC的体积为C. D.三棱锥P-ABC的侧面积为3.已知数列满足,(),则数列的通项公式()A. B. C. D.4.双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为()A. B.3 C. D.25.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.26.在复平面内,复数对应的点的坐标为()A. B. C. D.7.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A. B. C. D.8.已知函数在上单调递增,则的取值范围()A. B. C. D.9.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A. B. C. D.10.若函数f(x)=x3+x2-在区间(a,a+5)上存在最小值,则实数a的取值范围是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)11.已知,,若,则向量在向量方向的投影为()A. B. C. D.12.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()A. B.3 C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π﹣α)的值是_____.14.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB=OC,则△ABC面积的最大值为_______.15.如图,已知圆内接四边形ABCD,其中,,,,则__________.16.在中,已知,,是边的垂直平分线上的一点,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:分数不少于120分分数不足120分合计线上学习时间不少于5小时419线上学习时间不足5小时合计45(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.(下面的临界值表供参考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(参考公式其中)18.(12分)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.(1)求证:.(2)若点在轴的上方,当的面积最小时,求直线的斜率.附:多项式因式分解公式:19.(12分)已知.(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集.20.(12分)如图所示,在四棱锥中,∥,,点分别为的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.21.(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;(2)若点在圆上,点为坐标原点,求的取值范围.22.(10分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据给定的程序框图,逐次计算,结合判断条件,即可求解.【详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,;第2次循环,满足判断条件,;第3次循环,满足判断条件,;第4次循环,满足判断条件,;不满足判断条件,输出.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】
根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,,,,,、不可能垂直,即不可能两两垂直,,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.3、A【解析】
利用数列的递推关系式,通过累加法求解即可.【详解】数列满足:,,可得以上各式相加可得:,故选:.【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.4、A【解析】
设,直线的方程为,联立方程得到,,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.5、B【解析】
首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.6、C【解析】
利用复数的运算法则、几何意义即可得出.【详解】解:复数i(2+i)=2i﹣1对应的点的坐标为(﹣1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.7、D【解析】
使用不同方法用表示出,结合平面向量的基本定理列出方程解出.【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题.8、B【解析】
由,可得,结合在上单调递增,易得,即可求出的范围.【详解】由,可得,时,,而,又在上单调递增,且,所以,则,即,故.故选:B.【点睛】本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.9、B【解析】
先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【详解】,,因为,,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B.【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.10、C【解析】
求函数导数,分析函数单调性得到函数的简图,得到a满足的不等式组,从而得解.【详解】由题意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示.令x3+x2-=-,得x=0或x=-3,则结合图象可知,解得a∈[-3,0),故选C.【点睛】本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.11、B【解析】
由,,,再由向量在向量方向的投影为化简运算即可【详解】∵∴,∴,∴向量在向量方向的投影为.故选:B.【点睛】本题考查向量投影的几何意义,属于基础题12、D【解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
计算sinα,再利用诱导公式计算得到答案.【详解】由题意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案为:.【点睛】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力.14、【解析】
先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【详解】设B,O,E共线,则,解得,从而O为CD中点,故.在△BOD中,BD=2,,易知O的轨迹为阿氏圆,其半径,故.故答案为:.【点睛】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.15、【解析】
由题意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【详解】由圆内接四边形的性质可得,.连接BD,在中,有.在中,.所以,则,所以.连接AC,同理可得,所以.所以.故答案为:【点睛】本题考查余弦定理解三角形,同角三角函数基本关系,意在考查方程思想,计算能力,属于中档题型,本题的关键是熟悉圆内接四边形的性质,对角互补.16、【解析】
作出图形,设点为线段的中点,可得出且,进而可计算出的值.【详解】设点为线段的中点,则,,,.故答案为:.【点睛】本题考查平面向量数量积的计算,涉及平面向量数量积运算律的应用,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)填表见解析;有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”(2)①详见解析②期望;方差【解析】
(1)完成列联表,代入数据即可判断;(2)利用分层抽样可得的取值,进而得到概率,列出分布列;根据分析知,计算出期望与方差.【详解】(1)分数不少于120分分数不足120分合计线上学习时间不少于5小时15419线上学习时间不足5小时101626合计252045有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”.(2)①由分层抽样知,需要从不足120分的学生中抽取人,的可能取值为0,1,2,3,4,,,,,所以,的分布列:②从全校不少于120分的学生中随机抽取1人,此人每周上线时间不少于5小时的概率为,设从全校不少于120分的学生中随机抽取20人,这些人中每周线上学习时间不少于5小时的人数为,则,故,.【点睛】本题考查了独立性检验与离散型随机变量的分布列、数学期望与方差的计算问题,属于基础题.18、(1)证明见解析(2)【解析】
(1)由得令可得,进而得到,同理,利用数量积坐标计算即可;(2),分,两种情况讨论即可.【详解】(1)证明:点的坐标为.联立方程,消去后整理为有,可得,,.可得点的坐标为.当时,可求得点的坐标为,,.有,故有.(2)若点在轴上方,因为,所以有,由(1)知①因为时.由(1)知,由函数单调递增,可得此时.②当时,由(1)知令由,故当时,,此时函数单调递增:当时,,此时函数单调递减,又由,故函数的最小值,函数取最小值时,可求得.由①②知,若点在轴上方,当的面积最小时,直线的斜率为.【点睛】本题考查直线与椭圆的位置关系,涉及到分类讨论求函数的最值,考查学生的运算求解能力,是一道难题.19、(1);(2).【解析】
(1)依据能成立问题知,,然后利用绝对值三角不等式求出的最小值,即求得的取值范围;(2)按照零点分段法解含有两个绝对值的不等式即可。【详解】因为不等式有实数解,所以因为,所以故。①当时,,所以,故②当时,,所以,故③当时,,所以,故综上,原不等式的解集为。【点睛】本题主要考查不等式有解问题的解法以及含有两个绝对值的不等式问题的解法,意在考查零点分段法、绝对值三角不等式和转化思想、分类讨论思想的应用。20、(1)证明见解析(2)【解析】
(1)根据题意,连接交于,连接,利用三角形全等得,进而可得结论;(2)建立空间直角坐标系,利用向量求得平面的法向量,进而可得二面角的余弦值.【详解】(1)证明:连接交于,连接,,≌,且,面面,面,(2)取中点,连,.由,面面面,又由,以分别为轴建立如图所示空间直角坐标系,设,则,,,,,,为面的一个法向量,设面的法向量为,依题意,即,令,解得,所以,平面的法向量,,又因二面角为锐角,故二面角的余弦值为.【点睛】本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,注意中位线和向量法的合理运用,属于基础题.21、(1);(2).【解析】
(1)根据焦点坐标和离心率,结合椭圆中的关系,即可求得的值,进而得椭圆的标准方程.(2)设出直线的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 路面建设分包合同范本
- 软件维护保养协议
- 轻松学好小学语文
- 追踪大别山人文历史
- 配合饲料购销协议
- 酒吧地板购销合同指南
- 酒楼联手合作协议
- 采购协议条款范例模板
- 金属铸件购买合同
- 钢材供应商招标
- -外语教学法的沿袭与变革-外语教学法主要流派简介课件
- 许倬云说历史:大国霸业的兴废
- 新生儿先天性心脏病筛查技术规范课件
- 手卫生调查表
- 友善(课件) 小学生主题班会通用版(共45张PPT)
- 二年级下册《神奇的校车》课外阅读教案(共3课时,含读前指导、读中交流、读后展示)
- 人民医院肿瘤科临床技术操作规范2023版
- 15《我与地坛》说课稿+2022-2023学年统编版高中语文必修上册
- PCOS多囊卵巢综合征青春期月经紊乱
- 劳务施工组织方案 劳务施工组织设计(八篇)2023年
- 路灯杆强度计算简述
评论
0/150
提交评论