




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省重点中学2025届数学九上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.92.在比例尺为1:800000的“中国政区”地图上,量得甲市与乙市之间的距离是2.5cm,则这两市之间的实际距离为()km.A.20000000 B.200000 C.200 D.20000003.某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为().A. B. C. D.4.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.5.如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为().A. B. C. D.6.抛物线的顶点坐标为A. B. C. D.7.某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生8.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是(
)A. B. C. D.9.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25° B.20° C.15° D.30°10.把中考体检调查学生的身高作为样本,样本数据落在1.6~2.0(单位:米)之间的频率为0.28,于是可估计2000名体检中学生中,身高在1.6~2.0米之间的学生有()A.56 B.560 C.80 D.15011.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是()A.0 B. C. D.112.如图,某物体由上下两个圆锥组成,其轴截面中,,.若下部圆锥的侧面积为1,则上部圆锥的侧面积为()A. B. C. D.二、填空题(每题4分,共24分)13.如图三角形ABC的两条高线BD,CE相交于点F,已知∠ABC等于60度,,CF=EF,则三角形ABC的面积为________(用含的代数式表示).14.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_____(表示为y=a(x+m)2+k的形式).15.如图,点的坐标分别为,若将线段平移至,则的值为_____.16.如果二次函数的图象如图所示,那么____0.(填“>”,“=”,或“<”).17.路灯(P点)距地面高9米,身高1.5的小艺站在距路灯的底部(O点)20米的A点,则此时小艺在路灯下的影子长是__________米.18.如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是__________.三、解答题(共78分)19.(8分)如图①,四边形是边长为2的正方形,,四边形是边长为的正方形,点分别在边上,此时,成立.(1)当正方形绕点逆时针旋转,如图②,成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形绕点逆时针旋转(任意角)时,仍成立吗?直接回答;(3)连接,当正方形绕点逆时针旋转时,是否存在∥,若存在,请求出的值;若不存在,请说明理由.20.(8分)画出如图所示的几何体的三种视图.21.(8分)如图,已知矩形的边,,点、分别是、边上的动点.(1)连接、,以为直径的交于点.①若点恰好是的中点,则与的数量关系是______;②若,求的长;(2)已知,,是以为弦的圆.①若圆心恰好在边的延长线上,求的半径:②若与矩形的一边相切,求的半径.22.(10分)已知关于x的一元二次方程.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为,,且,求m的值.23.(10分)如图,在足够大的空地上有一段长为米的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了米木栏.(1)若米,所围成的矩形菜园的面积为平方米,求所利用旧墙的长;(2)若米,求矩形菜园面积的最大值.24.(10分)有甲、乙、丙三个不透明的布袋,甲袋中装有2个相同的小球,它们分别标有字母A和B;乙袋中装有3个相同的小球,它们分别标有字母C、D和E;丙袋中装有2个相同的小球,它们分别标有字母H和I.从三个布袋中各随机取出一个小球.求:(1)取出的3个小球恰好有2个元音字母的概率;(2)取出的3个小球全是辅音字母的概率.25.(12分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.26.(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
参考答案一、选择题(每题4分,共48分)1、A【分析】先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案.【详解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵⊙O为△ABC内切圆,∴∠AFO=∠AEO=90°,且AE=AF,∴四边形AEOF为正方形,设⊙O的半径为r,∴OE=OF=r,∴S四边形AEOF=r²,连接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四边形AEOF=r²=4,故选A.【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键.2、C【分析】比例尺=图上距离:实际距离.列出比例式,求解即可得出两地的实际距离.【详解】设这两市之间的实际距离为xcm,则根据比例尺为1:800000,列出比例式:1:800000=2.5:x,解得x=1.1cm=200km故选:C.【点睛】本题考查了比例尺的意义,注意图上距离跟实际距离单位要统一.3、D【分析】利用十字路口有红、黄、绿三色交通信号灯,遇到每种信号灯的概率之和为1,进而求出即可.【详解】解:∵十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,∴他遇到绿灯的概率为:1−−=.故选D.【点睛】此题主要考查了概率公式,得出遇到每种信号灯的概率之和为1是解题关键.4、D【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到,借助相似三角形的性质即可解决问题.【详解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴,∴S△DOE:S△AOC=,故选:D.【点睛】此题考查相似三角形的判定及性质,根据BE:EC=1:3得到同高两个三角形的底的关系是解题的关键,再利用相似三角形即可解答.5、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案.【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A.【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.6、B【分析】利用顶点公式,进行计算【详解】顶点坐标为故选B.【点睛】本题考查二次函数的性质,熟练运用抛物线顶点的公式是解题关键.7、C【分析】根据概率的意义,可知发生地震的概率是,说明发生地震的可能性大于不发生地震的可能性,从而可以解答本题.【详解】∵某地质学家预测:在未来的20年内,F市发生地震的概率是,∴未来20年内,F市发生地震的可能性比没有发生地震的可能性大,故选C.【点睛】本题主要考查概率的意义,发生地震的概率是,说明发生地震的可能性大于不发生地政的可能性,这是解答本题的关键.8、A【分析】画出图像,勾股定理求出AB的长,表示cosB即可解题.【详解】解:如下图,∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=5(勾股定理),∴cosB==,故选A.【点睛】本题考查了三角函数的求值,属于简单题,熟悉余弦函数的表示是解题关键.9、A【分析】根据圆周角定理可得∠BAC=25°,又由AC∥OB,∠BAC=∠B=25°,再由等边对等角即可求解答.【详解】解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,又∵AC∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案为A.【点睛】本题考查了圆周角定理和平行线的性质,灵活应用所学定理以及数形结合思想的应用都是解答本题的关键.10、B【分析】由题意根据频率的意义,每组的频率=该组的频数:样本容量,即频数=频率×样本容量.数据落在1.6~2.0(单位:米)之间的频率为0.28,于是2000名体检中学生中,身高在1.6~2.0米之间的学生数即可求解.【详解】解:0.28×2000=1.故选:B.【点睛】本题考查频率的意义与计算以及频率的意义,注意掌握每组的频率=该组的频数样本容量.11、B【分析】利用概率的意义直接得出答案.【详解】连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,
他第4次抛掷这枚硬币,正面朝上的概率为:.故选:B.【点睛】本题主要考查了概率的意义,正确把握概率的定义是解题关键.12、C【分析】先证明△ABD为等边三角形,得到AB=AD=BD,∠A=∠ABD=∠ADB=60°,由求出∠CBD=∠CDB=30°,从而求出BC和BD的比值,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到上部圆锥的侧面积.【详解】解:∵∠A=60°,AB=AD,
∴△ABD为等边三角形,
∴AB=AD=BD,∠A=∠ABD=∠ADB=60°,∵∠ABC=90°,
∴∠CBD=30°,而CB=CD,
∴△CBD为底角为30°的等腰三角形,过点C作CE⊥BD于点E,易得BD=2BE,∵∠CBD=30°,∴BE:BC=:2,∴BD:BC=:2=:1,即AB:BC=:1,∵上面圆锥与下面圆锥的底面相同,
∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,
∴下面圆锥的侧面积=.
故选:C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.二、填空题(每题4分,共24分)13、【分析】连接AF延长AF交BC于G.设EF=CF=x,连接AF延长AF交BC于G.设EF=CF=x,因为BD、CE是高,所以AG⊥BC,由∠ABC=60°,∠AGB=90°,推出∠BAG=30°,在Rt△AEF中,由EF=x,∠EAF=30°,可得在Rt△BCE中,由EC=2x,∠CBE=60°可得.由AE+BE=AB可得,代入即可解决问题.【详解】解:连接延长交于,设==,是高,,,,,在中,,,,在中,,,,,,,.【点睛】本题考查了勾股定理,含30度角的直角三角形,掌握勾股定理和30°直角三角形是解题的关键.14、y=﹣(x﹣1)2+1(答案不唯一)【解析】因为二次函数的顶点坐标为:(-m,k),根据题意图象的顶点位于第一象限,所以可得:m<0,k>0,因此满足m<0,k>0的点即可,故答案为:(答案不唯一).15、1【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【详解】由题意可知:a=0+(3-1)=1;b=0+(1-1)=1;
∴a+b=1.故答案为:1.【点睛】此题考查坐标与图形的变化-平移,解题的关键是得到各点的平移规律.16、<【分析】首先根据开口方向确定a的符号,再依据对称轴的正负和a的符号即可判断b的符号,然后根据与Y轴的交点的纵坐标即可判断c的正负,代入即可判断abc的正负.【详解】解:∵图象开口方向向上,∴a>0.∵图象的对称轴在x轴的负半轴上,∴.
∵a>0,∴b>0.∵图象与Y轴交点在y轴的负半轴上,
∴c<0.∴abc<0.故答案为<.【点睛】本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,此题运用了数形结合思想.17、2【分析】此题利用三角形相似证明即可,即图中路灯与影长组成的三角形和小艺与自身影长组成的三角形相似,再根据对应边成比计算即可.【详解】如图:∵PO⊥OB,AC⊥AB,∴∠O=∠CAB,∴△POB△CAB,∴,由题意知:PO=9,CA=1.5,OA=20,∴,解得:AB=2,即小艺在路灯下的影子长是2米,故答案为:2.【点睛】此题考查根据相似三角形测影长的相关知识,利用相似三角形的相关性质即可.18、【分析】先根据坡比求出AB的长度,再利用勾股定理即可求出BC的长度.【详解】故答案为:.【点睛】本题主要考查坡比及勾股定理,掌握坡比的定义及勾股定理是解题的关键.三、解答题(共78分)19、(1)成立,证明见解析;(2)结论仍成立;(3)存在,【分析】(1)先利用正方形的性质和旋转的性质证明≌,然后得出,再根据等量代换即可得出,则有;(2)先利用正方形的性质和旋转的性质证明≌,然后得出,再根据等量代换即可得出,则有;(3)通过分析得出时,在同一直线上,根据AO,AF求,从而有,最后利用即可求解.【详解】(1)结论,仍成立.如图1,延长交于交于点,∵四边形,ABCD都是正方形,∴.由旋转可得,,,∴≌,∴.,,∴,∴结论仍成立.(2)若正方形绕点逆时针旋转时,如图,结论仍然成立,理由如下:如图2,延长交于交于点,∵四边形,ABCD都是正方形,∴.由旋转可得,,,∴≌,∴.,,∴,∴结论仍成立.当旋转其他角度时同理可证,所以结论仍成立.(3)存在如图3,连接,与相交于,∵,当∥时,,又∵,∴在同一直线上.∵四边形ABCD,AEGF是正方形,∴.∵,∴.∵,,,∴,即当时,∥成立.【点睛】本题主要考查正方形的性质,全等三角形的判定及性质,解直角三角形,直角三角形两锐角互余,掌握正方形的性质,全等三角形的判定及性质,解直角三角形,直角三角形两锐角互余是解题的关键.20、见解析【分析】直接利用三视图的画法分别从不同角度得出答案.【详解】解:如图所示:【点睛】此题主要考查了作三视图,正确把握观察角度是解题关键.21、(1)①;②1.5;(2)①5;②、,、5.【解析】(1)①根据直径所对的圆周角是直角判断△APQ为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ∽△QBA,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分与矩形的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ是直径,E在圆上,∴∠PEQ=90°,∴PE⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴,∴,∴BP=1.5;(2)①如图,BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴的半径是5.②如图,与矩形的一边相切有4种情况,如图1,当与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=,∴半径为.如图2,当与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,,解得(舍去),,∴ON=,∴半径为.如图3,当与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y,则OM=OP=OQ=4-1-y=3-y,由勾股定理得,,解得(舍去),,∴OM=,∴半径为.如图4,当与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴半径为5.综上所述,若与矩形的一边相切,为的半径,,,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.22、(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.试题解析:(1)证明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵,方程的两实根为,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.23、(1)的长为;(2)当时,矩形菜园面积的最大值为.【分析】(1)设AB=xm,则BC=(100-2x)m,列方程求解即可;
(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【详解】(1)设AB=,则BC,根据题意得,解得,,当时,,不合题意舍去;当时,,答:AD的长为;(2)设AD=,∴则时,的最大值为;答:当时,矩形菜园面积的最大值为.【点睛】本题考查了一元二次方程和二次函数在实际问题中的应用,根据题意正确列式并明确二次函数的相关性质,是解题的关键.24、(1);(2).【分析】(1)根据题意画出树状图,根据树状图作答即可;(2)根据树状图作答即可.【详解】解:(1)画树状图得:∵共有12种等可能的结果,取出的3个小球上恰好有2个元音字母的为4种情况,∴P(恰好有2个元音字母);(2)∵取出的3个小球上全是辅音字母的有2种情况,∴取出的3个小球上全是辅音字母的概率是:.【点睛】本题考查了概率统计的问题,掌握树状图的性质以及画法是解题的关键.25、(1)如图①点C即为所求作的点;见解析;(2)如图②,点D即为所求作的点,见解析.【分析】(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.【详解】解:(1)如图①点C即为所求作的点;(2)如图②,点D即为所求作的点.【点睛】本题考查了作图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论