版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省驻马店确山县联考2025届数学九上期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.求竹竿有多长.设竹竿长尺,则根据题意,可列方程()A. B.C. D.2.如果,那么锐角A的度数是()A.60° B.45° C.30° D.20°3.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个 B.1个 C.2个 D.1个或2个4.已知3x=4y(x≠0),则下列比例式成立的是()A. B. C. D.5.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是()A. B. C. D.6.向上发射一枚炮弹,经秒后的高度为,且时间与高度的关系式为,若此时炮弹在第秒与第秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第秒 B.第秒 C.第秒 D.第秒7.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为1.其中,正确结论的个数为()A.1个 B.2个 C.1个 D.4个8.方程x2+5x=0的适当解法是()A.直接开平方法 B.配方法C.因式分解法 D.公式法9.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=10.下列说法中,正确的是()A.如果k=0,是非零向量,那么k=0 B.如果是单位向量,那么=1C.如果||=||,那么=或=﹣ D.已知非零向量,如果向量=﹣5,那么∥11.如图所示的两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是()A.点C B.点DC.线段BC的中点 D.线段FC的中点12.如图,△ABC的顶点都在方格纸的格点上,那么的值为()A. B. C. D.二、填空题(每题4分,共24分)13.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.14.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________15.用一个圆心角为150º,半径为8的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为________.16.己知圆锥的母线长为,底面半径为,则它的侧面积为__________(结果保留).17.如图,在△ABC中,∠A=30°,∠B=45°,BC=cm,则AB的长为_____.18..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.三、解答题(共78分)19.(8分)已知⊙中,为直径,、分别切⊙于点、.(1)如图①,若,求的大小;(2)如图②,过点作∥,交于点,交⊙于点,若,求的大小.20.(8分)某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量(件)与销售单价(元/件)的关系如下表:15202530550500450400设这种产品在这段时间内的销售利润为(元),解答下列问题:(1)如是的一次函数,求与的函数关系式;(2)求销售利润与销售单价之间的函数关系式;(3)求当为何值时,的值最大?最大是多少?21.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.22.(10分)用合适的方法解方程:(1);(2).23.(10分)如图,在中,,,,求和的长.24.(10分)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:,,,)25.(12分)某图书馆2014年年底有图书20万册,预计2016年年底图书增加到28.8万册.(1)求该图书馆这两年图书册数的年平均增长率;(2)如果该图书馆2017年仍保持相同的年平均增长率,请你预测2017年年底图书馆有图书多少万册?26.已知直线与是的直径,于点.(1)如图①,当直线与相切于点时,若,求的大小;(2)如图②,当直线与相交于点时,若,求的大小.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意,门框的长、宽以及竹竿长是直角三角形的三边长,等量关系为:门框长的平方+门框宽的平方=门的对角线长的平方,把相关数值代入即可求解.【详解】解:∵竹竿的长为x尺,横着比门框宽4尺,竖着比门框高2尺.
∴门框的长为(x-2)尺,宽为(x-4)尺,
∴可列方程为(x-4)2+(x-2)2=x2,
故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,得到门框的长,宽,竹竿长是直角三角形的三边长是解决问题的关键.2、A【分析】根据特殊角的三角函数值即可求解.【详解】解:∵,∴锐角A的度数是60°,故选:A.【点睛】本题考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.3、D【分析】根据垂线段最短,得圆心到直线的距离小于或等于4cm,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离;即可得出公共点的个数.【详解】解:根据题意可知,圆的半径r=4cm.∵OP=4cm,当OP⊥l时,直线和圆是相切的位置关系,公共点有1个;当OP与直线l不垂直时,则圆心到直线的距离小于4cm,所以是相交的位置关系,公共点有2个.∴直线L与⊙O的公共点有1个或2个,故选D.【点睛】本题考查了直线与圆的位置关系.特别注意OP不一定是圆心到直线的距离.4、B【解析】根据比例的基本性质:内项之积等于外项之积,逐项判断即可.【详解】A、由=得4x=3y,故本选项错误;B、由=得3x=4y,故本选项正确;C、由=得xy=12,故本选项错误;D、由=得4x=3y,故本选项错误;故选:B.【点睛】本题考查了比例的基本性质,熟练掌握内项之积等于外项之积是解题的关键.5、C【分析】根据图中符号所处的位置关系作答.【详解】解:从立体图形可以看出这X,菱形和圆都是相邻的关系,故B,D错误,当x在上面,菱形在前面时,圆在右边,故A错误,C正确.故选C.【点睛】此题主要考查了展开图折叠成几何体,动手折叠一下,有助于空间想象力的培养.6、B【分析】二次函数是一个轴对称图形,到对称轴距离相等的两个点所表示的函数值也是一样的.【详解】根据题意可得:函数的对称轴为直线x=,即当x=10时函数达到最大值.故选B.【点睛】本题主要考查的是二次函数的对称性,属于中等难度题型.理解“如果两个点到对称轴距离相等,则所对应的函数值也相等”是解决这个问题的关键.7、D【解析】本题考察二次函数的基本性质,一元二次方程根的判别式等知识点.【详解】解:∵,∴抛物线的对称轴<0,∴该抛物线的对称轴在轴左侧,故①正确;∵抛物线与轴最多有一个交点,∴∴关于的方程中∴关于的方程无实数根,故②正确;∵抛物线与轴最多有一个交点,∴当时,≥0正确,故③正确;当时,,故④正确.故选D.【点睛】本题的解题关键是熟悉函数的系数之间的关系,二次函数和一元二次方程的关系,难点是第四问的证明,要考虑到不等式的转化.8、C【分析】因为方程中可以提取公因式x,所以该方程适合用因式分解法.因式分解为x(x+5)=0,解得x=0或x=-5.用因式分解法解该方程会比较简单快速.【详解】解:∵x2+5x=0,∴x(x+5)=0,则x=0或x+5=0,解得:x=0或x=﹣5,故选:C.【点睛】本题的考点是解一元二次方程.方法是熟记一元二次方程的几种解法,也可用选项的四种方法分别解题,选择最便捷的方法.9、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.10、D【分析】根据平面向量的性质一一判断即可.【详解】解:A、如果k=0,是非零向量,那么k=0,错误,应该是k=.B、如果是单位向量,那么=1,错误.应该是=1.C、如果||=||,那么=或=﹣,错误.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正确.故选:D.【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.11、D【分析】直接利用中心对称图形的性质得出答案.【详解】解:两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是:线段FC的中点.故选:D.【点睛】本题比较容易,考查识别图形的中心对称性.要注意正确区分轴对称图形和中心对称图形,中心对称是要寻找对称中心,旋转180度后重合.12、D【分析】把∠A置于直角三角形中,进而求得对边与斜边之比即可.【详解】解:如图所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故选D.【点睛】本题考查了锐角三角函数的定义;合理构造直角三角形是解题关键.二、填空题(每题4分,共24分)13、1【分析】极差是指一组数据中最大数据与最小数据的差.极差=最大值−最小值,根据极差的定义即可解答.【详解】解:由题意可知,极差为28−12=1,
故答案为:1.【点睛】本题考查了极差的定义,解题时牢记定义是关键.14、(4+)【分析】根据题意先作B3E⊥x轴于E,观察图象可知为三次一个循环,求点M的运动路径,进而分析求得翻滚10次后AB中点M经过的路径长.【详解】解:如图作B3E⊥x轴于E,可知OE=5,B3E=,观察图象可知为三次一个循环,一个循环点M的运动路径为:,则翻滚10次后AB中点M经过的路径长为:.故答案为:(4+).【点睛】本题考查规律题,解题的关键是灵活运用弧长公式、等边三角形的性质等知识解决问题.15、【分析】根据扇形条件计算出扇形弧长,由此得到其所围成的圆锥的底面圆周长,由圆的周长公式计算底面圆的半径.【详解】∵圆心角为150º,半径为8∴扇形弧长:∴其围成的圆锥的底面圆周长为:∴设底面圆半径为则,得故答案为:.【点睛】本题考查了扇形弧长的计算,及扇形与圆锥之间的对应关系,熟知以上内容是解题的关键.16、【分析】求出圆锥的底面圆周长,利用公式即可求出圆锥的侧面积.【详解】解:圆锥的底面圆周长为,则圆锥的侧面积为.故答案为.【点睛】本题考查了圆锥的计算,能将圆锥侧面展开是解题的关键,并熟悉相应的计算公式.17、【分析】根据题意过点C作CD⊥AB,根据∠B=45°,得CD=BD,根据勾股定理和BC=得出BD,再根据∠A=30°,得出AD,进而分析计算得出AB即可.【详解】解;过点C作CD⊥AB,交AB于D.∵∠B=45°,∴CD=BD,∵BC=,∴BD=,∵∠A=30°,∴tan30°=,∴AD===3,∴AB=AD+BD=.故答案为:.【点睛】本题考查解直角三角形,熟练应用三角函数的定义是解题的关键.18、甲【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.三、解答题(共78分)19、(1);(2)【分析】(1)根据切线性质求出∠OBM=∠OAM=90°,根据圆周角定理求出∠COB,求出∠BOA,即可求出答案;
(2)连接AB、AD,得出平行四边形,推出MB=AD,推出AB=AD,求出等边三角形AMB,即可得出答案.【详解】(1)连接OB,
∵MA、MB分别切⊙O于A.
B,
∴∠OBM=∠OAM=90°,
∵弧BC对的圆周角是∠BAC,圆心角是∠BOC,∠BAC=25°,
∴∠BOC=2∠BAC=50°,
∴∠BOA=180°−50°=130°,
∴∠AMB=360°−90°−90°−130°=50°.
(2)连接AD,AB,
∵BD∥AM,DB=AM,
∴四边形BMAD是平行四边形,
∴BM=AD,
∵MA切⊙O于A,
∴AC⊥AM,
∵BD∥AM,
∴BD⊥AC,
∵AC过O,
∴BE=DE,
∴AB=AD=BM,
∵MA、MB分别切⊙O于A.
B,
∴MA=MB,
∴BM=MA=AB,
∴△BMA是等边三角形,
∴∠AMB=60°.【点睛】本题考查切线的性质、平行四边形的判定与性质、等边三角形的判定与性质,解题的关键是掌握切线的性质、平行四边形的判定与性质、等边三角形的判定与性质.20、(1);(2);(3)当时,的值最大,最大值为9000元【分析】(1)根据待定系数法即可求出一次函数解析式;(2)根据题意列出二次函数即可求解;(3)根据二次函数的性质即可得到最大值.【详解】(1)设与的函数关系式为y=kx+b把(15,550)、(20,500)代入得解得∴(2)∵成本为10元,故每件利润为(x-10)∴销售利润(3)=∵-10<0,∴当时,的值最大,最大值为9000元.【点睛】本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键.21、(1)证明见解析;(2)弧DE的长为π;(3)当∠F的度数是36°时,BF与⊙O相切.理由见解析.【解析】(1)连接AE,求出AE⊥BC,根据等腰三角形性质求出即可;(2)根据圆周角定理求出∠DOE的度数,再根据弧长公式进行计算即可;(3)当∠F的度数是36°时,可以得到∠ABF=90°,由此即可得BF与⊙O相切.【详解】(1)连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=∠BAC=×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=;(3)当∠F的度数是36°时,BF与⊙O相切,理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.【点睛】本题考查了圆周角定理、切线的判定、弧长公式等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.22、(1);(2),.【分析】(1)把方程整理后左边进行因式分解,求方程的解即可;(2)方程整理配方后,开方即可求出解;【详解】(1),移项整理得:,提公因式得:,∴或,解得:;(2),方程移项得:,二次项系数化成1得:,配方得:,即,开方得:,解得:.【点睛】本题主要考查了解一元二次方程-配方法、因式分解法,熟练掌握一元二次方程的各种解法是解题的关键.23、,【分析】作CD⊥AB于D.在Rt△BDC求出CD、BD,在Rt△ACD中求出AD、AC即可解决问题.【详解】解:如图,过点作于点,在中,,,,在中,,∴,,∴.【点睛】本题考查解直角三角形,锐角三角函数等知识,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货运平台司机试用合作协议
- 质监局聘用协议范本
- 企业人才培养与发展
- 宿舍内部装修指南
- 软件产品项目升级管理办
- 城市公园鱼塘改造施工合同
- 体育场隔墙施工合同
- 超市连锁加盟协议
- 学校通风系统改造合同
- 制造业研发创新会议制度
- 2024年秋季学期新人教版七年级上册英语课件 Unit 3 My School(第1课时)SectionA 1a-1d
- 广东省东莞市2023-2024学年六年级上学期语文期中试卷(含答案)
- DGTJ08-9-2023 建筑抗震设计标准
- 2024至2030年光纤光缆行业竞争格局分析与投资风险预测报告
- TCOSOCC 018-2024 信息安全技术 数据泄漏防护产品技术要求
- 幼儿园中班语言绘本《换一换》课件
- 国家电网招聘之通信类通关题库(附答案)
- 小小理财师教学课件
- 2024新苏教版一年级数学册第五单元第1课《认识11~19》课件
- 知识产权法(四川师范大学)智慧树知到答案2024年四川师范大学
- 2024义务教育语文课程标准(2022版)考试试题和答案
评论
0/150
提交评论