版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在区间上恰有四个不同的零点,则实数的取值范围是()A. B. C. D.2.下列函数中,图象关于轴对称的为()A. B.,C. D.3.设命题p:>1,n2>2n,则p为()A. B.C. D.4.已知,则()A.2 B. C. D.35.设集合,,若,则的取值范围是()A. B. C. D.6.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}7.某四棱锥的三视图如图所示,则该四棱锥的表面积为()A.8 B. C. D.8.已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是()A.若,且,则B.若,且,则C.若,且,则D.若,且,则9.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,异面直线SC与OE所成角的正切值为()A. B. C. D.10.已知函数在上单调递增,则的取值范围()A. B. C. D.11.下列说法正确的是()A.“若,则”的否命题是“若,则”B.在中,“”是“”成立的必要不充分条件C.“若,则”是真命题D.存在,使得成立12.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,若函数有大于零的极值点,则实数的取值范围是_____14.从集合中随机取一个元素,记为,从集合中随机取一个元素,记为,则的概率为_______.15.函数在区间上的值域为______.16.经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)诚信是立身之本,道德之基,我校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)计算表中十二周“水站诚信度”的平均数;(Ⅱ)若定义水站诚信度高于的为“高诚信度”,以下为“一般信度”则从每个周期的前两周中随机抽取两周进行调研,计算恰有两周是“高诚信度”的概率;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.18.(12分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.19.(12分)如图,已知抛物线:与圆:()相交于,,,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.20.(12分)如图,在四棱柱中,底面为菱形,.(1)证明:平面平面;(2)若,是等边三角形,求二面角的余弦值.21.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρcos2θ=4asinθ (a>0),直线l的参数方程为x=-2+22t,y=-1+(I)写出曲线C的直角坐标方程和直线l的普通方程(不要求具体过程);(II)设P(-2,-1),若|PM|,|MN|,|PN|成等比数列,求a的值.22.(10分)已知在ΔABC中,角A,B,C的对边分别为a,b,c,且cosB(1)求b的值;(2)若cosB+3sin
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围.【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或.因为,当时,,单调递减;当时,,单调递增;所以在处取得最小值,最小值为.因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且.故选:A.【点睛】本题考查复合函数的零点.考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力.2、D【解析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【点睛】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.3、C【解析】根据命题的否定,可以写出:,所以选C.4、A【解析】
利用分段函数的性质逐步求解即可得答案.【详解】,;;故选:.【点睛】本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用.5、C【解析】
由得出,利用集合的包含关系可得出实数的取值范围.【详解】,且,,.因此,实数的取值范围是.故选:C.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.6、C【解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.【详解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故选:C.【点睛】本题主要考查集合的交集运算,属于基础题.7、D【解析】
根据三视图还原几何体为四棱锥,即可求出几何体的表面积.【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.8、D【解析】
利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确.故选:.【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理.一般可借助正方体模型,以正方体为主线直观感知并准确判断.9、D【解析】
可过点S作SF∥OE,交AB于点F,并连接CF,从而可得出∠CSF(或补角)为异面直线SC与OE所成的角,根据条件即可求出,这样即可得出tan∠CSF的值.【详解】如图,过点S作SF∥OE,交AB于点F,连接CF,则∠CSF(或补角)即为异面直线SC与OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故选:D.【点睛】本题考查了异面直线所成角的定义及求法,直角三角形的边角的关系,平行线分线段成比例的定理,考查了计算能力,属于基础题.10、B【解析】
由,可得,结合在上单调递增,易得,即可求出的范围.【详解】由,可得,时,,而,又在上单调递增,且,所以,则,即,故.故选:B.【点睛】本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.11、C【解析】
A:否命题既否条件又否结论,故A错.B:由正弦定理和边角关系可判断B错.C:可判断其逆否命题的真假,C正确.D:根据幂函数的性质判断D错.【详解】解:A:“若,则”的否命题是“若,则”,故A错.B:在中,,故“”是“”成立的必要充分条件,故B错.C:“若,则”“若,则”,故C正确.D:由幂函数在递减,故D错.故选:C【点睛】考查判断命题的真假,是基础题.12、B【解析】
求出在的解析式,作出函数图象,数形结合即可得到答案.【详解】当时,,,,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求导数,求解导数为零的根,结合根的分布求解.【详解】因为,所以,令得,因为函数有大于0的极值点,所以,即.【点睛】本题主要考查利用导数研究函数的极值点问题,极值点为导数的变号零点,侧重考查转化化归思想.14、【解析】
先求出随机抽取a,b的所有事件数,再求出满足的事件数,根据古典概型公式求出结果.【详解】解:从集合中随机取一个元素,记为,从集合中随机取一个元素,记为,则的事件数为9个,即为,,,其中满足的有,,,共有8个,故的概率为.【点睛】本题考查了古典概型的计算,解题的关键是准确列举出所有事件数.15、【解析】
由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【详解】,,则,.故答案为:.【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.16、【解析】
作出图形,设点,则、,设点,利用点差法得出,利用斜率公式得出,进而可得出,可得出,由此可求得的值.【详解】设点,则、,设点,则,两式相减得,即,即,由斜率公式得,,,故,因此,.故答案为:.【点睛】本题考查椭圆中角的余弦值的求解,涉及了点差法与斜率公式的应用,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)两次活动效果均好,理由详见解析.【解析】
(Ⅰ)结合表中的数据,代入平均数公式求解即可;(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周,则有两周为“高诚信度”事件为,利用列举法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率计算公式求解即可;(Ⅲ)结合表中的数据判断即可.【详解】(Ⅰ)表中十二周“水站诚信度”的平均数.(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周均为“高诚信度”事件为,总的基本事件为共15种,事件所包含的基本事件为共10种,由古典概型概率计算公式可得,.(Ⅲ)两次活动效果均好.理由:活动举办后,“水站诚信度'由和看出,后继一周都有提升.【点睛】本题考查平均数公式和古典概型概率计算公式;考查运算求解能力;利用列举法正确列举出所有的基本事件是求古典概型概率的关键;属于中档题、常考题型.18、,;.【解析】
由,公差,有,,成等比数列,所以,解得.进而求出数列,的通项公式;当时,由,所以,当时,由,,可得,进而求出前项和.【详解】解:由题意知,,公差,有1,,成等比数列,所以,解得.所以数列的通项公式.数列的公比,其通项公式.当时,由,所以.当时,由,,两式相减得,所以.故所以的前项和,.又时,,也符合上式,故.【点睛】本题主要考查等差数列和等比数列的概念,通项公式,前项和公式的应用等基础知识;考查运算求解能力,方程思想,分类讨论思想,应用意识,属于中档题.19、(1)(2)点的坐标为【解析】
将抛物线方程与圆方程联立,消去得到关于的一元二次方程,抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,,,,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值,进而求出点坐标.【详解】(1)联立抛物线与圆的方程消去,得.由题意可知在上有两个不等的实数根.所以解得,所以的取值范围为.(2)根据(1)可设方程的两个根分别为,(),则,,,,且,,所以直线、的方程分别为,,联立方程可得,点的坐标为,因为四边形为等腰梯形,所以,令,则,所以,因为,所以当时,;当时,,所以函数在上单调递增,在上单调递减,即当时,四边形的面积取得最大值,因为,点的坐标为,所以当四边形的面积取得最大值时,点的坐标为.【点睛】本题考查利用导数求函数的极值与最值、抛物线及其标准方程及直线与圆锥曲线相关的最值问题;考查运算求解能力、转化与化归能力和知识的综合运用能力;利用函数的思想求圆锥曲线中面积的最值是求解本题的关键;属于综合型强、难度大型试题.20、(1)证明见解析(2)【解析】
(1)根据面面垂直的判定定理可知,只需证明平面即可.由为菱形可得,连接和与的交点,由等腰三角形性质可得,即能证得平面;(2)由题意知,平面,可建立空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,再分别求出平面的法向量,平面的法向量,即可根据向量法求出二面角的余弦值.【详解】(1)如图,设与相交于点,连接,又为菱形,故,为的中点.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等边三角形,可得,故平面,所以,,两两垂直.如图以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.不妨设,则,,则,,,,,,设为平面的法向量,则即可取,设为平面的法向量,则即可取,所以.所以二面角的余弦值为0.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理的应用,以及利用向量法求二面角,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于基础题.21、(I)x2=4aya>0,x-y+1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度版权许可合同:音乐作品的在线直播与播放
- 二零二四年度版权代理合同标的为作家作品推广
- 二零二四年二手制冷设备买卖合同
- 瓷砖施工2024年度进度计划合同
- 2024年度建筑工程施工合同:地铁站房建设工程
- 2024年油罐车物流配送合同:配送服务与合作协议
- 关于2024年度研发合作合同标的和研发服务具体内容
- 二零二四年度文化旅游开发合作合同
- 二零二四年度教育培训合同提供专业课程与实习机会
- 2024年度瓷砖产品展会展示合同
- 思想道德与法治智慧树知到答案章节测试2023年聊城大学
- 肿瘤免疫治疗相关不良反应管理
- 中小学无人机创客实验室建设实施方案
- 高温高湿测试报告
- 淀粉基聚合物胶束作为药物载体的综述,高分子材料论文
- 七年级语文上册课件:18《狼》(共82张PPT)
- 生产加工工艺流程及加工工艺要求
- GB/T 702-2017热轧钢棒尺寸、外形、重量及允许偏差
- GB/T 37522-2019爆炸物安全检查与处置通用术语
- GB/T 18034-2000微型热电偶用铂铑细偶丝规范
- GB 6142-2008禾本科草种子质量分级
评论
0/150
提交评论