2025届上海市虹口区市级名校高一下数学期末统考试题含解析_第1页
2025届上海市虹口区市级名校高一下数学期末统考试题含解析_第2页
2025届上海市虹口区市级名校高一下数学期末统考试题含解析_第3页
2025届上海市虹口区市级名校高一下数学期末统考试题含解析_第4页
2025届上海市虹口区市级名校高一下数学期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市虹口区市级名校高一下数学期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若向量与向量不相等,则与一定()A.不共线 B.长度不相等 C.不都是单位向量 D.不都是零向量2.已知数列满足,,则()A.1024 B.2048 C.1023 D.20473.若扇形的面积为、半径为1,则扇形的圆心角为()A. B. C. D.4.如图所示,已知正三棱柱的所有棱长均为1,则三棱锥的体积为()A. B. C. D.5.将函数的图像先向右平移个单位,再将所得的图像上每个点的横坐标变为原来的倍,得到的图像,则的可能取值为()A. B. C. D.6.三条线段的长分别为5,6,8,则用这三条线段A.能组成直角三角形 B.能组成锐角三角形C.能组成钝角三角形 D.不能组成三角形7.从装有4个红球和3个白球的袋中任取2个球,那么下列事件中,是对立事件的是()A.至少有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;恰好有2个白球 D.至少有1个白球;都是白球8.已知,则向量与向量的夹角是()A. B. C. D.9.如图所示,某汽车品牌的标志可看作由两个同心圆构成,其中大、小圆的半径之比为,小圆内部被两条互相垂直的直径分割成四块.在整个图形中任选一点,则该点选自白色部分的概率为()A. B. C. D.10.下列函数中,值域为的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若关于的不等式有解,则实数的取值范围为________.12.在等差数列中,,当最大时,的值是________.13.已知正方体的棱长为1,则三棱锥的体积为______.14.设x、y满足约束条件,则的取值范围是______.15.球的内接圆柱的表面积为,侧面积为,则该球的表面积为_______16.已知直线l与圆C:交于A,B两点,,则满足条件的一条直线l的方程为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在ΔABC中,角A,B,C,的对边分别是a,b,c,a-bsinA+sin(1)若b=6,求sinA(2)若D、E在线段BC上,且BD=DE=EC,AE=2318.已知函数当时,求函数的最小值.19.已知圆经过点.(1)若直线与圆相切,求的值;(2)若圆与圆无公共点,求的取值范围.20.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.(1)求证:AD⊥平面BFED;(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.21.已知集合,或.(1)若,求;(2)若,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由方向相同且模相等的向量为相等向量,再逐一判断即可得解.【详解】解:向量与向量不相等,它们有可能共线、有可能长度相等、有可能都是单位向量但方向不相同,但不能都是零向量,即选项A、B、C错误,D正确.故选:D.【点睛】本题考查了相等向量的定义,属基础题.2、C【解析】

根据叠加法求结果.【详解】因为,所以,因此,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.3、B【解析】设扇形的圆心角为α,则∵扇形的面积为,半径为1,

∴故选B4、A【解析】

利用等体法即可求解.【详解】三棱锥的体积等于三棱锥的体积,因此,三棱锥的体积为,故选:A.【点睛】本题考查了等体法求三棱锥的体积、三棱锥的体积公式,考查了转化与化归思想的应用,属于基础题.5、D【解析】由题意结合辅助角公式有:,将函数的图像先向右平移个单位,所得函数的解析式为:,再将所得的图像上每个点的横坐标变为原来的倍,所得函数的解析式为:,而,据此可得:,据此可得:.本题选择D选项.6、C【解析】

先求最大角的余弦,再得到三角形是钝角三角形.【详解】设最大角为,所以,所以三角形是钝角三角形.故选C【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.7、A【解析】

根据对立事件的定义判断.【详解】从装有4个红球和3个白球的袋内任取2个球,在A中,“至少有1个白球”与“都是红球”不能同时发生且必有一个事件会发生,是对立事件.在B中,“至少有1个白球”与“至少有1个红球”可以同时发生,不是互斥事件.在C中,“恰好有1个白球”与“恰好有2个白球”是互斥事件,但不是对立事件.在D中,“至少有1个白球”与“都是白球”不是互斥事件.故选:A.8、C【解析】试题分析:根据已知可得:,所以,所以夹角为,故选择C考点:向量的运算9、B【解析】

设大圆半径为,小圆半径为,求出白色部分面积和大圆面积,由几何概型概率公式可得.【详解】设大圆半径为,小圆半径为,则整个图形的面积为,白色部分的面积为,所以所求概率.故选:B.【点睛】本题考查几何概型,考查面积型的几何概型,属于基础题.10、B【解析】

依次判断各个函数的值域,从而得到结果.【详解】选项:值域为,错误选项:值域为,正确选项:值域为,错误选项:值域为,错误本题正确选项:【点睛】本题考查初等函数的值域问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用判别式可求实数的取值范围.【详解】不等式有解等价于有解,所以,故或,填.【点睛】本题考查一元二次不等式有解问题,属于基础题.12、6或7【解析】

利用等差数列的前项和公式,由,可以得到和公差的关系,利用二次函数的性质可以求出最大时,的值.【详解】设等差数列的公差为,,,所以,因为,,所以当或时,有最大值,因此当的值是6或7.【点睛】本题考查了等差数列的前项和公式,考查了等差数列的前项和最大值问题,运用二次函数的性质是解题的关键.13、.【解析】

根据题意画出正方体,由线段关系即可求得三棱锥的体积.【详解】根据题意,画出正方体如下图所示:由棱锥的体积公式可知故答案为:【点睛】本题考查了三棱锥体积求法,通过转换顶点法求棱锥的体积是常用方法,属于基础题.14、【解析】

由约束条件可得可行域,将问题转化为在轴截距取值范围的求解;通过直线平移可确定的最值点,代入点的坐标可求得最值,进而得到取值范围.【详解】由约束条件可得可行域如下图阴影部分所示:将的取值范围转化为在轴截距的取值范围问题由平移可知,当过图中两点时,在轴截距取得最大和最小值,,的取值范围为故答案为:【点睛】本题考查线性规划中的取值范围问题的求解,关键是能够将问题转化成直线在轴截距的取值范围的求解问题,通过数形结合的方式可求得结果.15、【解析】

设底面半径为,圆柱的高为,根据圆柱求得和的值,进而利用圆柱的轴截面求得球的半径,利用球的表面积公式,即可求解.【详解】由题意,设底面半径为,圆柱的高为,则圆柱的底面面积为,解得,侧面积,解得,则圆柱的轴截面是边长分别为4和3的矩形,其对角线长为5,所以外接球的半径为,所以球的表面积为.【点睛】本题主要考查了圆柱的表面积和侧面积公式的应用,以及球的表面积公式应用,其中解答中正确理解空间几何体的结构特征是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于基础题.16、(答案不唯一)【解析】

确定圆心到直线的距离,即可求直线的方程.【详解】由题意得圆心坐标,半径,,∴圆心到直线的距离为,∴满足条件的一条直线的方程为.故答案为:(答案不唯一).【点睛】本题考查直线和圆的方程的应用,考查学生的计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)32+【解析】

(1)根据正弦定理化简边角关系式,可整理出余弦定理形式,得到cosB=12;再根据正弦定理求得sinC,根据同角三角函数得到cosC;根据两角和差公式求得sinA;(2)设BD=x,在【详解】(1)∵由正弦定理得:a-b整理得:a2+∵0<B<π∴B=由正弦定理bsinB=c∵b>c∴B>C∴∴(2)设BD=x,则:BE=2x,AE=2在ΔABE中,利用余弦定理AE12x2=16+4x∴BE=2,AE=23,又AB=4,即BE∴AD=【点睛】本题考查正弦定理、余弦定理解三角形的问题,涉及到正弦定理化简边角关系式、同角三角函数求解、两角和差公式的运算,考查对于定理和公式的应用,属于常规题型.18、当时,,当时,,当时,.【解析】

将函数的解析式化成二次函数的形式,然后把作为整体,并根据的取值范围,结合求二次函数在闭区间上的最值的方法进行求解即可.【详解】由题意得.∵,∴.当,即时,则当,即时,函数取得最小值,且;当,即时,则当,即时,函数取得最小值,且;当,即时,则当,函数取得最小值,且.综上可得.【点睛】解答本题的关键是将问题转化为二次函数的问题求解,求二次函数在闭区间上的最值时要结合抛物线的开口方向和对称轴与区间的位置关系求解,体现了数形结合的应用,属于基础题.19、(1)或.(2)【解析】试题分析:由题意可得圆的方程为.(1)由圆心到直线的距离等于半径可得,解得或,即为所求.(2)由圆与圆无公共点可得两圆内含或外离,根据圆心距和两半径的关系得到不等式即可得到所求范围.试题解析:将点的坐标代入,可得,所以圆的方程为,即,故圆心为,半径.(1)因为直线与圆相切,所以圆心到直线的距离等于圆的半径,即,整理得,解得或.(2)圆的圆心为,则,由题意可得圆与圆内含或外离,所以或,解得或.所以的取值范围为.20、(1)证明见解析(2)θ最小值为60°【解析】

(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再结合面面垂直的判定,证得DE⊥平面ABCD,即可证得AD⊥平面BFED;(2)以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,求得平面PAB与平面ADE法向量,利用向量的夹角公式,即可求解。【详解】(1)证明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE⊂平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直线AD,BD,ED两两垂直,故以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,令EP=λ(0≤λ≤),则D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,1).设n1=(x,y,z)为平面PAB的法向量,由得,取y=1,则n1=(,1,-λ).因为n2=(0,1,0)是平面ADE的一个法向量,所以cosθ===.因为0≤λ≤,所以当λ=时,cosθ有最大值,所以θ的最小值为60°.【点睛】本题考查了线面垂直关系的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论