版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省亳州市黉学高级中学2025届高一数学第二学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若实数x,y满足条件,则目标函数z=2x-y的最小值()A. B.-1 C.0 D.22.在中,已知角的对边分别为,若,,,,且,则的最小角的余弦值为()A. B. C. D.3.若,则下列结论成立的是()A. B.C.的最小值为2 D.4.在中,(,,分别为角、、的对边),则的形状为()A.等边三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形5.在中,已知其面积为,则=()A. B. C. D.6.椭圆以轴和轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A. B.C.或 D.或7.设函数,则满足的x的取值范围是()A. B. C. D.8.若等差数列和的公差均为,则下列数列中不为等差数列的是()A.(为常数) B.C. D.9.已知数列满足,,则数列的前5项和()A.15 B.28 C.45 D.6610.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.已知二面角为60°,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为.12.圆上的点到直线4x+3y-12=0的距离的最小值是13.在等差数列中,,,则的值为_______.14.若,则______(用表示).15.在等比数列中,若,则等于__________.16.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期,并求其单调递减区间;(2)的内角,,所对的边分别为,,,若,且为钝角,,求面积的最大值.18.中,角所对的边分别为,已知.(1)求角的大小;(2)若,求面积的最大值.19.记Sn为等比数列的前n项和,已知S2=2,S3=-6.(1)求的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.20.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:521.已知函数.(1)求不等式的解集;(2)若当时,恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
线性规划问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。【详解】可行域如图所示,当目标函数平移到A点时z取最小值,故选A【点睛】线性规划中线性的目标函数问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。2、D【解析】
利用余弦定理求出和的表达式,由,结合正弦定理得出的表达式,利用余弦定理得出的表达式,可解出的值,于此确定三边长,再利用大边对大角定理得出为最小角,从而求出.【详解】,由正弦定理,即,,,,解得,由大边对大角定理可知角是最小角,所以,,故选D.【点睛】本题考查正弦定理和余弦定理的应用,考查大边对大角定理,在解题时,要充分结合题中的已知条件选择正弦定理和余弦定理进行求解,考查计算能力,属于中等题.3、D【解析】
由,根据不等式乘方性质可判断A不成立;由指数函数单调性可判断B不成立;由基本不等式可判断C不成立,D成立.【详解】对于A,若,则有,故A不成立;对于B,根据指数函数单调性,函数单调递减,,故B不成立;对于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;则D能成立.故选:D.【点睛】本题考查基本不等式、不等式的基本性质,考查不等式性质的应用,属于基础题.4、B【解析】
利用二倍角公式,正弦定理,结合和差公式化简等式得到,得到答案.【详解】故答案选B【点睛】本题考查了正弦定理,和差公式,意在考查学生的综合应用能力.5、C【解析】或(舍),故选C.6、C【解析】
由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),分类讨论,即可求解.【详解】由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),则若焦点在x轴上,则,,椭圆方程为;若焦点在y轴上,则,,椭圆方程为,故选C.【点睛】本题主要考查了椭圆的方程的求解,其中解答中熟记椭圆的标准方程的形式,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】
分别解和时条件对应的不等式即可.【详解】①当时,,此时,不合题意;②当时,,可化为即,解得.综上,的x的取值范围是.故选:B.【点睛】本题考查了分段函数不等式的解法,考查了分类讨论思想,属于基础题.8、D【解析】
利用等差数列的定义对选项逐一进行判断,可得出正确的选项.【详解】数列和是公差均为的等差数列,则,,.对于A选项,,数列(为常数)是等差数列;对于B选项,,数列是等差数列;对于C选项,,所以,数列是等差数列;对于D选项,,不是常数,所以,数列不是等差数列.故选:D.【点睛】本题考查等差数列的定义和通项公式,注意等差数列定义的应用,考查推理能力,属于中等题.9、C【解析】
根据可知数列为等差数列,再根据等差数列的求和性质求解即可.【详解】因为,故数列是以4为公差,首项的等差数列.故.故选:C【点睛】本题主要考查了等差数列的判定与等差数列求和的性质与计算,属于基础题.10、D【解析】试题分析:由题意,为得到函数的图象,只需把函数的图象上所有的点向右平行移动个单位长度,故选D.【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,在函数的图象平移变换中要注意“”的影响,变换有两种顺序:一种的图象向左平移个单位得的图象,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,再向左平移个单位得的图象.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
如图
分别作于A,于C,于B,于D,
连CQ,BD则,,
又
当且仅当,即点A与点P重合时取最小值.
故答案选C.【点睛】12、【解析】
计算出圆心到直线的距离,减去半径,求得圆上的点到直线的最小距离.【详解】圆的圆心为,半径.圆心到直线的距离为,故最小距离为.【点睛】本小题主要考查圆上的点到直线距离最小值的求法,考查点到直线距离公式,属于基础题.13、.【解析】
设等差数列的公差为,根据题中条件建立、的方程组,求出、的值,即可求出的值.【详解】设等差数列的公差为,所以,解得,因此,,故答案为:.【点睛】本题考查等差数列的项的计算,常利用首项和公差建立方程组,结合通项公式以及求和公式进行计算,考查方程思想,属于基础题.14、【解析】
直接利用诱导公式化简求解即可.【详解】解:,则,故答案为:.【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力,属于基础题.15、【解析】
由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.16、【解析】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期;单调递减区间为;(2)【解析】
(1)利用二倍角和辅助角公式可化简函数为;利用可求得最小正周期;令解出的范围即可得到单调递减区间;(2)由可得,根据的范围可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面积公式求得结果.【详解】(1)最小正周期:令得:的单调递减区间为:单调递减区间.(2)由得:,解得:由余弦定理得:(当且仅当时取等号)即面积的最大值为:【点睛】本题考查正弦型函数最小正周期和单调区间的求解、解三角形中三角形面积最值的求解问题;涉及到二倍角公式和辅助角公式的应用、余弦定理和三角形面积公式的应用等知识;求解正弦型函数单调区间的常用解法为整体代入的方式,通过与正弦函数图象的对应关系来进行求解.18、(1);(2).【解析】
(1)由正弦定理化边为角,再由同角间的三角函数关系化简可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面积最大值.【详解】(1)∵,∴,又,∴,即,∴;(2)由(1),∴,当且仅当时等号成立.∴,,最大值为.【点睛】本题考查正弦定理和余弦定理,考查同角间的三角函数关系,考查基本不等式求最值.本题主要是考查的公式较多,掌握所有公式才能正确解题.本题属于中档题.19、(1);(2)见解析.【解析】试题分析:(1)由等比数列通项公式解得,即可求解;(2)利用等差中项证明Sn+1,Sn,Sn+2成等差数列.试题解析:(1)设的公比为.由题设可得,解得,.故的通项公式为.(2)由(1)可得.由于,故,,成等差数列.点睛:等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.20、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解析】
(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;(3)根据题意分别求出,,,的人数,即可得出结果.【详解】(1)由频率分布直方图可得:,(2)平均分为众数为65分.中位数为(3)数学成绩在的人数为,在的人数为,在的人数为,在的人数为,在的人数为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024股权质押借款合同范本2
- 信用贷款合同模板
- 2024年国际买卖合同中英文
- 2024年建筑外墙节能保温技术服务合同
- 2024规范的电子配件购销合同模板
- 三轮摩托购车合同范本2024年
- 教育机构合作契约
- 2024停车场场地协议书范文
- 网络证券交易平台服务协议
- 经营托管合同范本
- 中国介入医学白皮书(2021 版)
- 2024中华人民共和国农村集体经济组织法详细解读课件
- 代运营合作服务协议
- 婚内财产协议书(2024版)
- 有限空间作业应急管理制度
- 2024全国普法知识考试题库及答案
- 化工企业中试阶段及试生产期间的产品能否对外销售
- 篮球智慧树知到期末考试答案章节答案2024年浙江大学
- 国开作业《公共关系学》实训项目1:公关三要素分析(六选一)参考552
- 碳排放核算与报告要求 第XX部分:铅冶炼企业
- 物业及物业管理:提升旅游景区品质
评论
0/150
提交评论