河北省沧州市2025届高一数学第二学期期末调研模拟试题含解析_第1页
河北省沧州市2025届高一数学第二学期期末调研模拟试题含解析_第2页
河北省沧州市2025届高一数学第二学期期末调研模拟试题含解析_第3页
河北省沧州市2025届高一数学第二学期期末调研模拟试题含解析_第4页
河北省沧州市2025届高一数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省沧州市2025届高一数学第二学期期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的倾斜角不可能为()A. B. C. D.2.若在是减函数,则的最大值是A. B. C. D.3.某学校有教师200人,男学生1200人,女学生1000人,现用分层抽样的方法从全体师生中抽取一个容量为n的样本,若女学生一共抽取了80人,则n的值为()A.193 B.192 C.191 D.1904.数列是各项均为正数的等比数列,数列是等差数列,且,则()A. B.C. D.5.函数的图像大致为()A. B. C. D.6.已知数列和数列都是无穷数列,若区间满足下列条件:①;②;则称数列和数列可构成“区间套”,则下列可以构成“区间套”的数列是()A., B.,C., D.,7.以下说法正确的是()A.零向量与单位向量的模相等B.模相等的向量是相等向量C.已知均为单位向量,若,则与的夹角为D.向量与向量是共线向量,则四点在一条直线上8.已知底面半径为1,体积为的圆柱,内接于一个高为圆锥(如图),线段AB为圆锥底面的一条直径,则从点A绕圆锥的侧面到点B的最短距离为()A.8 B. C. D.49.某学校为了解1000名新生的身体素质,将这些学生编号1,2,……,1000,从这些新生中用系统抽样方法等距抽取50名学生进行体质测验.若66号学生被抽到,则下面4名学生中被抽到的是()A.16 B.226 C.616 D.85610.设是△所在平面上的一点,若,则的最小值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-512.计算:=_______________.13.已有无穷等比数列的各项的和为1,则的取值范围为__________.14.中,,,,则______.15.已知函数,若,且,则__________.16.已知函数fx=cosx+2cosx,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,已知,,且,求.18.已知向量,,.(1)若、、三点共线,求;(2)求的面积.19.已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.20.已知平面向量(1)若,求;(2)若,求与夹角的余弦值.21.某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:,,,…,后得到如图频率分布直方图.(1)根据频率分布直方图,估计众数和中位数;(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据直线方程,分类讨论求得直线的斜率的取值范围,进而根据倾斜角和斜率的关系,即可求解,得到答案.【详解】由题意,可得当时,直线方程为,此时倾斜角为;当时,直线方程化为,则斜率为:,即,又由,解得或,又由且,所以倾斜角的范围为,显然A,B都符合,只有D不符合,故选D.【点睛】本题主要考查了直线方程的应用,以及直线的倾斜角和斜率的关系,着重考查了分类讨论思想,以及推理与运算能力.2、A【解析】

分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值.详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1).(2)周期(3)由求对称轴,(4)由求增区间;由求减区间.3、B【解析】

按分层抽样的定义,按比例计算.【详解】由题意,解得.故选:B.【点睛】本题考查分层抽样,属于简单题.4、B【解析】分析:先根据等比数列、等差数列的通项公式表示出、,然后表示出和,然后二者作差比较即可.详解:∵an=a1qn﹣1,bn=b1+(n﹣1)d,∵,∴a1q4=b1+5d,=a1q2+a1q6=2(b1+5d)=2b6=2a5﹣2a5=a1q2+a1q6﹣2a1q4=a1q2(q2﹣1)2≥0所以≥故选B.点睛:本题主要考查了等比数列的性质.比较两数大小一般采取做差的方法.属于基础题.5、A【解析】

先判断函数为偶函数排除;再根据当时,,排除得到答案.【详解】,偶函数,排除;当时,,排除故选:【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.6、C【解析】

直接利用已知条件,判断选项是否满足两个条件即可.【详解】由题意,对于A:,,∵,∴不成立,所以A不正确;对于B:由,,得不成立,所以B不正确;对于C:,∵,∴成立,并且也成立,所以C正确;对于D:由,,得,∴不成立,所以D不正确;故选:C.【点睛】本题考查新定义的理解和运用,考查数列的极限的求法,考查分析问题解决问题的能力及运算能力,属于中档题.7、C【解析】

根据零向量、单位向量、相等向量,向量的模、向量共线、向量数量积的运算的知识分析选项,由此确定正确选项.【详解】对于A选项,零向量的模是,单位向量的模是,两者不相等,故A选项说法错误.对于B选项,两个向量大小和方向都相等才是相等向量,故B选项说法错误.对于C选项,由,故C选项说法正确.对于D选项,向量与向量是共线向量,但是这两个向量没有公共点,所以无法判断是否在一条直线上.故D选项说法错误.故选:C【点睛】本小题主要考查向量的有关概念,考查向量数量积的运算,属于基础题.8、C【解析】

先求解圆锥的底面半径,再根据侧面展开图的结构计算扇形中间的距离即可.【详解】设圆柱的高为,则,得.因为,所以为的中位线,所以,则.即圆锥的底面半径为1,母线长为4,则展开后所得扇形的弧长为,圆心角为.所以从点A绕圆锥的侧面到点B的最短距离为.故选:C.【点睛】本题主要考查了圆柱与圆锥内切求解有关量的问题以及圆锥的侧面积展开求距离最小值的问题.属于中档题.9、B【解析】

抽样间隔为,由第三组中的第6个数被抽取到,结合226是第12组中的第6个数,从而可得结果.【详解】从这些新生中用系统抽样方法等距抽取50名学生进行体质测验,抽样间隔为,号学生被抽到,第四组中的第6个数被抽取到,226是第12组中的第6个数,被抽到,故选:B.【点睛】本题主要考查系统抽样的性质,确定抽样间隔是解题的关键,属于基础题.10、C【解析】分析:利用向量的加法运算,设的中点为D,可得,利用数量积的运算性质可将原式化简为,为AD中点,从而得解.详解:由,可得.设的中点为D,即.点P是△ABC所在平面上的任意一点,为AD中点.∴.当且仅当,即点与点重合时,有最小值.故选C.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.二、填空题:本大题共6小题,每小题5分,共30分。11、④【解析】

由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.12、【解析】试题分析:考点:两角和的正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.13、【解析】

根据无穷等比数列的各项和表达式,将用公比表示,根据的范围求解的范围.【详解】因为且,又,且,则.【点睛】本题考查无穷等比数列各项和的应用,难度一般.关键是将待求量与公比之间的关系找到,然后根据的取值范围解决问题.14、【解析】

根据,得到的值,再由余弦定理,得到的值.【详解】因为,所以,在中,,,由余弦定理得.所以.故答案为:【点睛】本题考查二倍角的余弦公式,余弦定理解三角形,属于简单题.15、2【解析】不妨设a>1,

则令f(x)=|loga|x-1||=b>0,

则loga|x-1|=b或loga|x-1|=-b;

故x1=-ab+1,x2=-a-b+1,x3=a-b+1,x4=ab+1,

故故答案为2点睛:本题考查了绝对值方程及对数运算的应用,同时考查了指数的运算,注意计算的准确性.16、(0,1)【解析】

画出函数f(x)在x∈0,2【详解】解:画出函数y=cosx+2|cosx|=3cos以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或【解析】

首先根据三角形面积公式求出角B的正弦值,然后利用平方关系,求出余弦值,再依据余弦定理即可求出.【详解】由得,,所以或,由余弦定理有,,故或,即或.【点睛】本题主要考三角形面积公式、同角三角函数基本关系的应用,以及利用余弦定理解三角形.18、(1)(2)【解析】

(1)根据题意,若、、三点共线,则表达和,根据向量共线定理的坐标表示,可求解参数值,即可求解模长.(2)根据题意,先求,,再求向量、的夹角,代入三角形面积公式,即可求解.【详解】解:(1)已知向量,,∴,,由点、、三点共线,得.解得.,(3)因为,,所以,,,,,【点睛】本题考查(1)向量共线的坐标表示;(2)三角形面积公式;考查计算能力,属于基础题.19、(1)m=0;(2)m=±2.【解析】试题分析:(1)直线平分圆,即直线过圆心,将圆心坐标代入直线方程可得m值(2)根据圆心到直线距离等于半径列方程,解得m值试题解析:解:(1)∵直线平分圆,所以圆心在直线y=x+m上,即有m=0.(2)∵直线与圆相切,所以圆心到直线的距离等于半径,∴d==2,m=±2.即m=±2时,直线l与圆相切.点睛:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.20、(1)(2)【解析】

(1)由题可得,解出,,进而得出答案.(2)由题可得,,再由计算得出答案,【详解】因为,所以,即解得所以(2)若,则所以,,,所以【点睛】本题主要考查的向量的模以及数量积,属于简单题.21、(1)众数为75,中位数为73.33;(2).【解析】

(1)由频率分布直方图能求出a=0.1.由此能求出众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,基本事件总数,这两人的分数至少一人落在[50,60)包含的基本事件个数,由此能求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论