




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足(是虚数单位),则()A. B. C. D.2.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. B. C.或- D.和-3.已知集合,则集合的非空子集个数是()A.2 B.3 C.7 D.84.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.45.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是().金牌(块)银牌(块)铜牌(块)奖牌总数2451112282516221254261622125027281615592832171463295121281003038272388A.中国代表团的奥运奖牌总数一直保持上升趋势B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C.第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D.统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.56.记递增数列的前项和为.若,,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则()A. B.C. D.7.设变量满足约束条件,则目标函数的最大值是()A.7 B.5 C.3 D.28.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.9.已知函数,且关于的方程有且只有一个实数根,则实数的取值范围().A. B. C. D.10.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8 B.9 C.10 D.1111.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若,则,,,的大小关系为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等边三角形的边长为1.,点、分别为线段、上的动点,则取值的集合为__________.14.从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为_____________.15.四边形中,,,,,则的最小值是______.16.已知直线被圆截得的弦长为2,则的值为__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列和满足,,,,.(Ⅰ)求与;(Ⅱ)记数列的前项和为,且,若对,恒成立,求正整数的值.18.(12分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由.19.(12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.(1)证明:平面.(2)三棱锥的体积最大时,求二面角的余弦值.20.(12分)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,,,,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.理科方向文科方向总计男110女50总计(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.参考公式:,其中.参考临界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)在角中,角A、B、C的对边分别是a、b、c,若.(1)求角A;(2)若的面积为,求的周长.22.(10分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.2、C【解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.【详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴由对称性可知k=±.故选C.【点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.3、C【解析】
先确定集合中元素,可得非空子集个数.【详解】由题意,共3个元素,其子集个数为,非空子集有7个.故选:C.【点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个.4、B【解析】
因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【详解】请在此输入详解!5、B【解析】
根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D.统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.6、D【解析】
由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围.【详解】解:,或其积,或其商仍是该数列中的项,或者或者是该数列中的项,又数列是递增数列,,,,只有是该数列中的项,同理可以得到,,,也是该数列中的项,且有,,或(舍,,根据,,,同理易得,,,,,,,故选:D.【点睛】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题.7、B【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8、B【解析】
由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.9、B【解析】
根据条件可知方程有且只有一个实根等价于函数的图象与直线只有一个交点,作出图象,数形结合即可.【详解】解:因为条件等价于函数的图象与直线只有一个交点,作出图象如图,由图可知,,故选:B.【点睛】本题主要考查函数图象与方程零点之间的关系,数形结合是关键,属于基础题.10、D【解析】
由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,,,令,则有,故的最小值为11,故选:D.【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.11、D【解析】
根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.12、D【解析】因为,所以,因为,,所以,.综上;故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意建立平面直角坐标系,设三角形各点的坐标,依题意求出,,,的表达式,再进行数量积的运算,最后求和即可得出结果.【详解】解:以的中点为坐标原点,所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,如图所示,则,,,,则,,,设,,,即点的坐标为,则,,,所以故答案为:【点睛】本题考查平面向量的坐标表示和线性运算,以及平面向量基本定理和数量积的运算,是中档题.14、【解析】
基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,由此能求出概率.【详解】解:从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,分别为:,,,,,,,.所以第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为.故答案为.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,属于基础题.15、【解析】
在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.【详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.【点睛】本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题.16、1【解析】
根据弦长为半径的两倍,得直线经过圆心,将圆心坐标代入直线方程可解得.【详解】解:圆的圆心为(1,1),半径,
因为直线被圆截得的弦长为2,
所以直线经过圆心(1,1),
,解得.故答案为:1.【点睛】本题考查了直线与圆相交的性质,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ)1【解析】
(Ⅰ)易得为等比数列,再利用前项和与通项的关系求解的通项公式即可.(Ⅱ)由题可知要求的最小值,再分析的正负即可得随的增大而增大再判定可知即可.【详解】(Ⅰ)因为,故是以为首项,2为公比的等比数列,故.又当时,,解得.当时,…①…②①-②有,即.当时也满足.故为常数列,所以.即.故,(Ⅱ)因为对,恒成立.故只需求的最小值即可.设,则,又,又当时,时.当时,因为.故.综上可知.故随着的增大而增大,故,故【点睛】本题主要考查了根据数列的递推公式求解通项公式的方法,同时也考查了根据数列的增减性判断最值的问题,需要根据题意求解的通项,并根据二项式定理分析其正负,从而得到最小项.属于难题.18、(1)(2)【解析】试题分析:(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,圆与椭圆的位置关系.点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理.存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备.(2)小题解答中,集合韦达定理,应用平面向量知识证明了圆的存在性.19、(1)见解析(2)【解析】
(1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平面.(2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)证明:因为平面平面是正方形,所以平面.因为平面,所以.因为点在以为直径的半圆弧上,所以.又,所以平面.(2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.不妨设,记中点为,以为原点,分别以的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则令,得.设平面的法向量为,则令,得,所以.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、(1)列联表见解析,有;(2)分布列见解析,,.【解析】
(1)由频率分布直方图可得分数在、之间的学生人数,可得列联表.根据列联表计算的值,结合参考临界值表可得到结论;(2)从该校高一学生中随机抽取1人,求出该人为“文科方向”的概率.由题意,求出分布列,根据公式求出期望和方差.【详解】(1)由频率分布直方图可得分数在之间的学生人数为,在之间的学生人数为,所以低于60分的学生人数为120.因此列联表为理科方向文科方向总计男8030110女405090总计12080200又,所以有99%的把握认为是否为“文科方向”与性别有关.(2)易知从该校高一学生中随机抽取1人,则该人为“文科方向”的概率为.依题意知,所以(),所以的分布列为0123P所以期望,方差.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民航安全技术管理专业教学标准(高等职业教育专科)2025修订
- 2025年中国聚合丁苯橡胶(SSBR)行业市场全景分析及前景机遇研判报告
- 心理咨询案例培训课件
- 中国飞行模拟器行业市场发展现状及前景趋势与投资分析研究报告(2024-2030)
- 全自动凝胶成像系统行业深度研究分析报告(2024-2030版)
- 法治大培训课件
- 2025年中国芜菁种植行业市场运行现状及投资战略研究报告
- 中试总结报告范文
- 2025年 无锡市工会社会工作者招聘考试笔试试题附答案
- 2025年 聊城东昌府区事业单位青人才引进考试试题附答案
- JT-T-795-2011事故汽车修复技术规范
- JBT 10437-2024 电线电缆用可交联聚乙烯绝缘料(正式版)
- 初中数学教育教学案例(3篇模板)
- DZ∕T 0289-2015 区域生态地球化学评价规范(正式版)
- 《祝福》课件 统编版高中语文必修下册
- 《技术成果投资入股个人所得税递延纳税备案表》
- MOOC 油气田应用化学-西南石油大学 中国大学慕课答案
- 《HSK标准教程4上》第4课自用课件
- 七年级数学下册期中测试卷(完整)
- 智慧消防建设投标方案(技术方案)
- 罐体吊装施工方案
评论
0/150
提交评论