版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南明德中学数学高一下期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角,,的对边分别为,,.若,则的形状是A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定2.设,函数在区间上是增函数,则()A. B.C. D.3.为等差数列的前项和,且,.记,其中表示不超过的最大整数,如,.数列的前项和为()A. B. C. D.4.数列1,,,,…的一个通项公式为()A. B. C. D.5.用数学归纳法时,从“k到”左边需增乘的代数式是()A. B.C. D.6.函数的图象可能是().A. B. C. D.7.设,,,则,,的大小关系是()A. B. C. D.8.已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B.C. D.9.已知,,三点,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.等腰直角三角形10.若,则()A.-4 B.3 C.4 D.-3二、填空题:本大题共6小题,每小题5分,共30分。11.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;12.已知数列的前项和满足,则______.13.一水平位置的平面图形的斜二测直观图是一个底平行于轴,底角为,两腰和上底长均为1的等腰梯形,则这个平面图形的面积是.14.如图所示,已知,用表示.15.如图,在圆心角为,半径为2的扇形AOB中任取一点P,则的概率为________.16.的值域是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量(),向量,,且.(Ⅰ)求向量;(Ⅱ)若,,求.18.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.19.为选派一名学生参加全市实践活动技能竟赛,A、B两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm)A、B两位同学各加工的10个零件直径的平均数与方差列于下表;平均数方差A200.016B20s2B根据测试得到的有关数据,试解答下列问题:(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.20.单调递增的等差数列满足,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.21.已知关于,的方程:表示圆.(Ⅰ)求的取值范围;(Ⅱ)若,过点作的切线,求切线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由正弦定理可推得,再由余弦定理计算最大边的余弦值即可判断三角形形状.【详解】因为,所以,设,,,则角为的最大角,由余弦定理可得,即,故是钝角三角形.【点睛】本题考查用正弦定理和余弦定理解三角形,属于基础题.2、C【解析】
首先比较自变量与的大小,然后利用单调性比较函数值与的大小.【详解】因为,函数在区间上是增函数,所以.故选C.【点睛】已知函数单调性比较函数值大小,可以借助自变量的大小来比较函数值的大小.3、D【解析】
利用等差数列的通项公式与求和公式可得,再利用,可得,,.即可得出.【详解】解:为等差数列的前项和,且,,.可得,则公差.,,则,,,.数列的前项和为:.故选:.【点睛】本题考查了等差数列的通项公式与求和公式、对数运算性质、取整函数,考查了推理能力与计算能力,属于中档题.4、A【解析】
把数列化为,根据各项特点写出它的一个通项公式.【详解】数列…可以化为,所以该数列的一个通项公式为.故选:A【点睛】本题考查了根据数列各项特点写出它的一个通项公式的应用问题,是基础题目.5、C【解析】
分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式.【详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C.【点睛】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键.6、D【解析】
首先判断函数的奇偶性,排除选项,再根据特殊区间时,判断选项.【详解】是偶函数,是奇函数,是奇函数,函数图象关于原点对称,故排除A,B,当时,,,排除C.故选D.【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项.7、D【解析】
首先确定题中,,的取值范围,再根据大小排序即可.【详解】由题知,,,,所以排序得到.故选:D.【点睛】本题主要考查了比较指数对数的大小问题,属于基础题.8、B【解析】
由平行线间的距离公式求出圆的直径,然后设出圆心,由点到两条切线的距离都等于半径,求出,即可求得圆的方程.【详解】因为两条直线与平行,所以它们之间的距离即为圆的直径,所以,所以.设圆心坐标为,则点到两条切线的距离都等于半径,所以,,解得,故圆心为,所以圆的标准方程为.故选:.【点睛】本题主要考查求解圆的方程,同时又进一步考查了直线与圆的位置关系,圆的切线性质等.本题也注重考查审题能力,分析问题和解决问题的能力.难度较易.9、D【解析】
计算三角形三边长度,通过边关系进行判断.【详解】由两点之间的距离公式可得:,,,因为,且故该三角形为等腰直角三角形.故选:D.【点睛】本题考查两点之间的距离公式,属基础题.10、A【解析】
已知等式左边用诱导公式变形后用正弦和二倍角公式化简,右边用切化弦法变形,再由二倍角公式化简后可得.【详解】,,∴,.故选:A.【点睛】本题考查诱导公式,考查二倍角公式,同角间的三角函数关系,掌握三角函数恒等变形公式,确定选用公式的顺序是解题关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.12、5【解析】
利用求得,进而求得的值.【详解】当时,,当时,,当时上式也满足,故的通项公式为,故.【点睛】本小题主要考查已知求,考查运算求解能力,属于基础题.13、【解析】如图过点作,,则四边形是一个内角为45°的平行四边形且,中,,则对应可得四边形是矩形且,是直角三角形,.所以14、【解析】
可采用向量加法和减法公式的线性运算进行求解【详解】由,整理得【点睛】本题考查向量的线性运算,解题关键在于将所有向量通过向量的加法和减法公式转化成基底向量,属于中档题15、【解析】
根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设,由数量积的计算公式可得满足的区域,求出其面积,代入几何概率的计算公式即可求解.【详解】根据题意,建立如图的坐标系,则则扇形的面积为设若,则有,即;则满足的区域为如图的阴影区域,直线与弧的交点为,易得的坐标为,则阴影区域的面积为故的概率故答案为:【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.16、【解析】
对进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】,因为所以的值域为.故答案为:【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)∵,,∵,∴,即,①又,②由①②联立方程解得,,.∴;(Ⅱ)∵,即,,∴,,又∵,,∴.18、(1),;(2).【解析】
(1)先求出周期得,由最高点坐标可求得,然后由正弦函数的单调性得结论;(2)由直线与的图象交点的对称性可得.【详解】(1)由题意,∴,又,,,由得,∴,令得,∴单调减区间是,;(2)在含有三个周期,如图,的图象与在上有六个交点,前面两个交点关于直线对称,中间两个关于直线对称,最后两个关于直线对称,∴所求六个根的和为.【点睛】本题考查由三角函数的性质求解析式,考查函数的单调性,考查函数零点与方程根的分布问题.函数零点与方程根的分布问题可用数形结合思想,把方程的根转化为函数图象与直线交点的横坐标,再利用对称性求解.19、(Ⅰ)0.008,B的成绩好些(Ⅱ)派A去参赛较合适【解析】
(Ⅰ)利用方差的公式,求得S2A>S2B,从而在平均数相同的情况下,B的波动较小,由此得到B的成绩好一些;(Ⅱ)从图中折线趋势可知尽管A的成绩前面起伏大,但后来逐渐稳定,误差小,预测A的潜力大,从而派A去参赛较合适.【详解】(Ⅰ)由题意,根据表中的数据,利用方差的计算公式,可得S2B∴S2A>S2B,∴在平均数相同的情况下,B的波动较小,∴B的成绩好些.(Ⅱ)从图中折线趋势可知:尽管A的成绩前面起伏大,但后来逐渐稳定,误差小,预测A的潜力大,∴派A去参赛较合适.【点睛】本题主要考查了方差的求法及其应用,同时考查了折线图、方差的性质等基础知识.20、(1);(2).【解析】
(1)设等差数列的公差为,,运用等差数列的通项公式和等比数列中项性质,解方程可得公差,进而得到所求通项公式;(2)求得,再用裂项相消法即可得出结论.【详解】解:(1)设等差数列的公差为,,可得,,由,,成等比数列,,解得或舍去),则;(2),∴.【点睛】本题主要考查等差数列的通项公式和等比数列中项性质,考查数列的裂项相消法求和,考查运算能力,属于中档题.21、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)根据圆的一般方程表示圆的条件,可得关于的不等式,即可求得的取值范围.(Ⅱ)将代入,可得圆的方程,化为标准方程.讨论斜率是否存在两种情况.当斜率不存在时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年对讲机吊带项目投资价值分析报告
- 2025年中国酒车市场调查研究报告
- 2025年非金属浮雕项目可行性研究报告
- 2025年钢管内外壁清理机项目可行性研究报告
- 2025年荞麦茶项目可行性研究报告
- 2025年无线数码遥控门铃项目可行性研究报告
- 2025年手持式雕刻枪项目可行性研究报告
- 2025幼儿园综合服务派遣合同书规范文本
- 2025年公共广播会议系统项目可行性研究报告
- 二零二五年度房屋拆迁拆除与重建一体化合同2篇
- 2024年江苏省高考政治试卷(含答案逐题解析)
- 执业医师资格考试《临床执业医师》 考前 押题试卷(一)绝密1
- 2024七年级数学上册第六章几何图形初步综合与实践设计学校田径运动会比赛场地课件新版新人教版
- 全国网约车出租车驾驶员公共题模拟考试题及答案
- 新人教版一年级数学下册全册教案(表格式)
- 简易三方换地协议书范本
- 2025届广东省深圳罗湖区四校联考九上数学期末综合测试试题含解析
- 飞鼠养殖技术指导
- 2024年襄阳汉江检测有限公司招聘笔试参考题库附带答案详解
- 医院检验科安全风险评估报告表单
- 高一北师大版历史必修一知识点总结9篇
评论
0/150
提交评论