2025届重庆市四区联考数学高一下期末学业质量监测试题含解析_第1页
2025届重庆市四区联考数学高一下期末学业质量监测试题含解析_第2页
2025届重庆市四区联考数学高一下期末学业质量监测试题含解析_第3页
2025届重庆市四区联考数学高一下期末学业质量监测试题含解析_第4页
2025届重庆市四区联考数学高一下期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市四区联考数学高一下期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量、满足,且,则为()A. B.6 C.3 D.2.sin300°的值为A. B. C. D.3.现有1瓶矿泉水,编号从1至1.若从中抽取6瓶检验,用系统抽样方法确定所抽的编号为()A.3,13,23,33,43,53 B.2,14,26,38,42,56C.5,8,31,36,48,54 D.5,10,15,20,25,304.若,则()A. B. C.或 D.5.某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.6.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. B.C. D.7.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.据上述信息,下列结论中正确的是()A.2015年第三季度环比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度环比有所提高8.已知变量x与y负相关,且由观测数据算得样本平均数=1.5,=5,则由该观测数据算得的线性回归方程可能是()A. B.C. D.9.已知等比数列的前项和为,则下列一定成立的是()A.若,则 B.若,则C.若,则 D.若,则10.已知集合,,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列的前项和为,则该数列的通项公式为______.12.已知数列是公差不为0的等差数列,,且成等比数列,则的前9项和_______.13.在中,角所对的边分别为,,则____14.已知函数,,则的最大值是__________.15.已知向量,,且,则的值为________.16.已知圆的圆心在直线上,半径为,若圆上存在点,它到定点的距离与到原点的距离之比为,则圆心的纵坐标的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知曲线C:x2+y2+2x+4y+m=1.(1)当m为何值时,曲线C表示圆?(2)若直线l:y=x﹣m与圆C相切,求m的值.18.已知分别是内角的对边,.(1)若,求(2)若,且求的面积.19.已知向量,.(1)当为何值时,与垂直?(2)若,,且三点共线,求的值.20.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40"m,则电视塔的高度为多少?21.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上.(1)求点C的坐标;(2)求△ABC的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

先由可得,即可求得,再对平方处理,进而求解【详解】因为,所以,则,所以,则,故选:A【点睛】本题考查向量的模,考查向量垂直的数量积表示,考查运算能力2、B【解析】

利用诱导公式化简,再求出值为.【详解】因为,故选B.【点睛】本题考查诱导公式的应用,即终边相同角的三角函数值相等及.3、A【解析】

根据系统抽样原则,可知编号成公差为的等差数列,观察选项得到结果.【详解】根据系统抽样原则,可知所抽取编号应成公差为的等差数列选项编号公差为;选项编号不成等差;选项编号公差为;可知错误选项编号满足公差为的等差数列,正确本题正确选项:【点睛】本题考查抽样方法中的系统抽样,关键是明确系统抽样的原则和特点,属于基础题.4、D【解析】

利用诱导公式变形,再化弦为切求解.【详解】由诱导公式化简得,又,所以原式.故选D【点睛】本题考查三角函数的化简求值,考查倍角公式及诱导公式的应用,也考查了化弦为切的思想,属于基础题.5、D【解析】

由题意首先确定流程图的功能,然后结合三角函数的性质求解所要输出的结果即开即可.【详解】根据程序框图知,该算法的目标是计算和式:.又因为,注意到,故:.故选:D.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.6、B【解析】绘制圆柱的轴截面如图所示,由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.7、C【解析】

根据同比和环比的定义比较两期数据得出结论.【详解】解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;2015年第一季度利用率为74.2%,2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;2016年底三季度利用率率为73.2%,2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;2017年第四季度利用率为78%,2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.故选C.【点睛】本题考查了新定义的理解,图表认知,考查分析问题解决问题的能力,属于基础题.8、A【解析】

先由变量负相关,可排除D;再由回归直线过样本中心,即可得出结果.【详解】因为变量x与y负相关,所以排除D;又回归直线过样本中心,A选项,过点,所以A正确;B选项,不过点,所以B不正确;C选项,不过点,所以C不正确;故选A【点睛】本题主要考查线性回归直线,熟记回归直线的意义即可,属于常考题型.9、C【解析】

设等比数列的公比为q,利用通项公式与求和公式即可判断出结论.【详解】设等比数列的公比为q,若,则,则,而与0的大小关系不确定.若,则,则与同号,则与0的大小关系不确定.故选:C【点睛】本题主要考查了等比数列的通项公式与求和公式及其性质、不等式的性质与解法,考查了推理能力与计算能力,属于中档题.10、C【解析】分析:由题意先解出集合A,进而得到结果。详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由,可得出,再令,可计算出,然后检验是否满足在时的表达式,由此可得出数列的通项公式.【详解】由题意可知,当时,;当时,.又不满足.因此,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但要对是否满足进行检验,考查运算求解能力,属于中等题.12、117【解析】

由成等比数列求出公差,由前项公式求和.【详解】设数列是公差为,则,由成等比数列得,解得,∴.故答案为:117.【点睛】本题考查等差数列的前项和公式,考查等比数列的性质.解题关键是求出数列的公差.13、【解析】

利用正弦定理将边角关系式中的边都化成角,再结合两角和差公式进行整理,从而得到.【详解】由正弦定理可得:即:本题正确结果:【点睛】本题考查李用正弦定理进行边角关系式的化简问题,属于常规题.14、3【解析】函数在上为减函数,故最大值为.15、【解析】

利用共线向量的坐标表示求出的值,可计算出向量的坐标,然后利用向量的模长公式可求出的值.【详解】,,且,,解得,,则,因此,,故答案为:.【点睛】本题考查利用共线向量的坐标表示求参数,同时也考查了向量模的坐标运算,考查计算能力,属于基础题.16、【解析】因为圆心在直线上,设圆心,则圆的方程为,设点,因为,所以,化简得,即,所以点在以为圆心,为半径的圆上,则,即,整理得,由,得,由,得,所以圆心的纵坐标的取值范围是.点睛:本题主要考查了圆的方程,动点的轨迹方程、两圆的位置关系、解不等式等知识的综合运用,着重考查了转化与化归思想和学生的运算求解能力,解答中根据题设条件得到动点的轨迹方程,利用两圆的位置关系,列出不等式上解答的关键.对于直线与圆的位置关系问题,要熟记有关圆的性质,同时注意数形结合思想的灵活运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当m<2时,曲线C表示圆(2)m=±3【解析】解:(1)由C:x2+y2+2x+4y+m=1,得(x+1)2+(y+2)2=2﹣m,由2﹣m>1,得m<2.∴当m<2时,曲线C表示圆;(2)圆C的圆心坐标为(﹣1,﹣2),半径为.∵直线l:y=x﹣m与圆C相切,∴,解得:m=±3,满足m<2.∴m=±3.【点评】本题考查圆的一般方程,考查了直线与圆位置关系的应用,训练了点到直线的距离公式的应用,是基础题.18、(1);(2)1【解析】试题分析:(1)由,结合正弦定理可得:,再利用余弦定理即可得出(2)利用(1)及勾股定理可得c,再利用三角形面积计算公式即可得出试题解析:(1)由题设及正弦定理可得又,可得由余弦定理可得(2)由(1)知因为,由勾股定理得故,得所以的面积为1考点:正弦定理,余弦定理解三角形19、(1);(2).【解析】

(1)利用坐标运算表示出与;根据向量垂直可知数量积为零,从而构造方程求得结果;(2)利用坐标运算表示出,根据三点共线可知,根据向量共线的坐标表示可构造方程求得结果.【详解】(1),与垂直,解得:(2)三点共线,,解得:【点睛】本题考查平面向量的坐标运算,涉及到向量平行和垂直的坐标表示;关键是能够明确两向量垂直则数量积等于零,能够利用平行关系表示三点共线.20、40m.【解析】试题分析:本题是解三角形的实际应用题,根据题意分析出图中的数据,即∠ADB=30°,∠ACB=45°,所以,可以得出在Rt△ABD中,BD=AB,在Rt△ABC中,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,代入数据,运算即可得出结果.试题解析:根据题意得,在Rt△ABD中,∠ADB=30°,∴BD=AB,在Rt△ABC中,∠ACB=45°,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,∴3AB2=AB2+CD2-2AB·CDcos120°整理得AB2-20AB-800=0,解得,AB=40或AB=-20(舍).即电视塔的高度为40

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论