上海市第二工业大学附属龚路中学2025届高一数学第二学期期末学业水平测试模拟试题含解析_第1页
上海市第二工业大学附属龚路中学2025届高一数学第二学期期末学业水平测试模拟试题含解析_第2页
上海市第二工业大学附属龚路中学2025届高一数学第二学期期末学业水平测试模拟试题含解析_第3页
上海市第二工业大学附属龚路中学2025届高一数学第二学期期末学业水平测试模拟试题含解析_第4页
上海市第二工业大学附属龚路中学2025届高一数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市第二工业大学附属龚路中学2025届高一数学第二学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则值为A. B. C. D.2.在集合且中任取一个元素,所取元素x恰好满足方程的概率是()A. B. C. D.3.在中,点是边上的靠近的三等分点,则()A. B.C. D.4.已知向量、的夹角为,,,则()A. B. C. D.5.如图,长方体的体积为,E为棱上的点,且,三棱锥E-BCD的体积为,则=()A. B. C. D.6.已知函数在区间上是增函数,且在区间上恰好取得一次最大值为2,则的取值范围是()A. B. C. D.7.若,则下列不等式成立的是A. B. C. D.8.已知,,且,则()A.1 B.2 C.3 D.49.在空间直角坐标系中,点P(3,4,5)关于平面的对称点的坐标为()A.(−3,4,5) B.(−3,−4,5)C.(3,−4,−5) D.(−3,4,−5)10.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.二、填空题:本大题共6小题,每小题5分,共30分。11.设三棱锥满足,,则该三棱锥的体积的最大值为____________.12.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.13.过直线上一点作圆的两条切线,切点分别为,若的最大值为,则实数__________.14.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.15.设表示不超过的最大整数,则________16.数列满足,(且),则数列的通项公式为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,与的夹角为.(1)若,求;(2)若与垂直,求.18.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.19.已知函数为奇函数.(1)求实数的值并证明函数的单调性;(2)解关于不等式:.20.如图,某小区有一块半径为米的半圆形空地,开发商计划在该空地上征地建一个矩形的花坛和一个等腰三角形的水池EDC,其中为圆心,在圆的直径上,在半圆周上.(1)设,征地面积为,求的表达式,并写出定义域;(2)当满足取得最大值时,建造效果最美观.试求的最大值,以及相应角的值.21.在中,角所对的边分别为,已知,.(1)求的值;(2)若,求周长的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用三角函数的诱导公式,得到,即可求解.【详解】由题意,可得,故选B.【点睛】本题主要考查了三角函数的诱导公式的化简、求值,其中解答中熟练应用三角函数的诱导公式是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】

写出集合中的元素,分别判断是否满足即可得解.【详解】集合且的元素,,,,,,.基本事件总数为,满足方程的基本事件数为.故所求概率.故选:B.【点睛】本题考查了古典概型概率的求解,属于基础题.3、A【解析】

将题中所体现的图形画出,可以很直观的判断向量的关系.【详解】如图有向量运算可以知道:,选择A【点睛】考查平面向量基本定理,利用好两向量加法的计算原则:首尾相连,首尾相接.4、B【解析】

利用平面向量数量积和定义计算出,可得出结果.【详解】向量、的夹角为,,,则.故选:B.【点睛】本题考查利用平面向量的数量积来计算平面向量的模,在计算时,一般将模进行平方,利用平面向量数量积的定义和运算律进行计算,考查计算能力,属于中等题.5、D【解析】

分别求出长方体和三棱锥E-BCD的体积,即可求出答案.【详解】由题意,,,则.故选D.【点睛】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.6、D【解析】

化简函数为正弦型函数,根据题意,利用正弦函数的图象与性质求得的取值范围.【详解】解:函数则函数在上是含原点的递增区间;又因为函数在区间上是单调递增,则,得不等式组又因为,所以解得.又因为函数在区间上恰好取得一次最大值为2,可得,所以,综上所述,可得.故选:D.【点睛】本题主要考查了正弦函数的图像和性质应用问题,也考查了三角函数的灵活应用,属于中档题.7、C【解析】

利用的单调性直接判断即可。【详解】因为在上递增,又,所以成立。故选:C【点睛】本题主要考查了幂函数的单调性,属于基础题。8、D【解析】

根据向量的平行可得4m=3m+4,解得即可.【详解】,,且,则,解得,故选D.【点睛】本题考查了向量平行的充要条件,考查了运算求解能力以及化归与转化思想,属于基础题.9、A【解析】

由关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,即可得解.【详解】关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,所以点P(3,4,5)关于平面的对称点的坐标为(−3,4,5).故选A.【点睛】本题主要考查了空间点的对称点的坐标求法,属于基础题.10、C【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

取中点,连,可证平面,,要使最大,只需求最大值,即可求解.【详解】取中点,连,所以,,,平面,平面,设中边上的高为,,当且仅当时,取等号.故答案为:.【点睛】本题考查锥体的体积计算,考查线面垂直的判定,属于中档题.12、1【解析】

运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【详解】解:,可得周期,,则满足的的个数为.故答案为:1.【点睛】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.13、1或;【解析】

要使最大,则最小.【详解】圆的标准方程为,圆心为,半径为.∵若的最大值为,∴,解得或.故答案为1或.【点睛】本题考查直线与圆的位置关系,解题思路是平面上对圆的张角问题,显然在点固定时,圆外的点作圆的两条切线,这两条切线间的夹角是最大角,而当点离圆越近时,这个又越大.14、【解析】

列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【点睛】本题考查数列的通项公式,可根据递推公式求出.15、【解析】

根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【详解】故答案为:【点睛】本题主要考查了三角函数的计算,属于基础题型.16、【解析】

利用累加法和裂项求和得到答案.【详解】当时满足故答案为【点睛】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)根据向量共线,对向量的夹角分类讨论,利用数量积公式即可完成求解;(2)根据向量垂直得到数量积为,再根据已知条件并借助数量积公式即可计算出的值.【详解】(1)∵,∴与的夹角为或,当时,,当时,,综上所述,;(2)∵,∴,即,∵,∴,∴∵向量的夹角的范围是,∴【点睛】本题考查根据向量的平行、垂直求解向量的夹角以及向量数量积公式的运用,难度较易.注意共线向量的夹角为或.18、(1),;(2).【解析】

(1)由函数的图象经过点且f(x)的图象有一条对称轴为直线,可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式.(2)利用正弦函数的单调性求得f(x)的单调递增区间.【详解】(1)函数f(x)=Asin(ωx+)(A>0,ω>0,)在一个周期内的图象经过点,,且f(x)的图象有一条对称轴为直线,故最大值A=4,且,∴,∴ω=1.所以.因为的图象经过点,所以,所以,.因为,所以,所以.(2)因为,所以,,所以,,即的单调递增区间为.【点睛】本题主要考查由函数y=Asin(ωx+)的性质求解析式,通常由函数的最大值求出A,由周期求出ω,由五点法作图求出的值,考查了正弦型函数的单调性问题,属于基础题.19、(1)2,证明见解析(2)【解析】

(1)由函数为奇函数,得,化简得,所以,.再转化函数为,由定义法证明单调性.(2)将可化为,构造函数,再由在上是单调递增函数求解.【详解】(1)根据题意,因为函数为奇函数,所以,即,即,即,化简得,所以.所以,证明:任取且,则因为,所以,,,,所以∴,所以在上单调递增;(2)可化为,设函数,由(1)可知,在上也是单调递增,所以,即,解得.【点睛】本题主要考查了函数的单调性和奇偶性的应用,还考查了运算求解的能力,属于中档题.20、(1)(2)最大值为,此时【解析】

(1)连接,在中,求出,进而求出面积以及角的范围;(2)令,再求出的范围,转化为二次函数即可求出最大值,以及相应角的值.【详解】(1)连接,在中,,(2),令,因为,所以,所以因为在上单调递增,所以时有最大值为,此时【点睛】本题主要考查三角函数与实际应用相结合,最终转化为二次函数进行求解,这类问题的特点是通过现实生活的事例考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论